Search Results
You are looking at 11 - 20 of 24 items for
- Author or Editor: B. L. Weber x
- Refine by Access: All Content x
Abstract
Radar wind profilers (RWPs) sense the mean and turbulent motion of the clear air through Doppler shifts induced along several (3–5) upward-looking beams. RWP signals, like all radars signals, are often contaminated. The contamination is clearly evident in the associated Doppler spectra, and automatic routines designed to extract meteorological quantities from these spectra often yield inaccurate results. Much of the observed contamination is due to an aliasing of higher frequency signals into the clear-air portion of the spectrum and a broadening of the spectral contaminants caused by the relatively short time series used to generate Doppler spectra. In the past, this source of contamination could not be avoided because of limitations on the size and speed of RWP processing computers. Today’s computers, however, are able to process larger amounts of data at greatly increased speeds. Here it is shown how standard and well-known spectral processing methods can be applied to significantly longer time series to reduce contamination in the radar spectra and thereby improve the accuracy and the reliability of meteorological products derived from RWP systems. In particular, spectral processing methods to identify and remove contamination that is often aliased into the clear-air portion of the spectrum are considered. Optimal techniques for combining multiple spectra to produce averaged spectra are also discussed.
Abstract
Radar wind profilers (RWPs) sense the mean and turbulent motion of the clear air through Doppler shifts induced along several (3–5) upward-looking beams. RWP signals, like all radars signals, are often contaminated. The contamination is clearly evident in the associated Doppler spectra, and automatic routines designed to extract meteorological quantities from these spectra often yield inaccurate results. Much of the observed contamination is due to an aliasing of higher frequency signals into the clear-air portion of the spectrum and a broadening of the spectral contaminants caused by the relatively short time series used to generate Doppler spectra. In the past, this source of contamination could not be avoided because of limitations on the size and speed of RWP processing computers. Today’s computers, however, are able to process larger amounts of data at greatly increased speeds. Here it is shown how standard and well-known spectral processing methods can be applied to significantly longer time series to reduce contamination in the radar spectra and thereby improve the accuracy and the reliability of meteorological products derived from RWP systems. In particular, spectral processing methods to identify and remove contamination that is often aliased into the clear-air portion of the spectrum are considered. Optimal techniques for combining multiple spectra to produce averaged spectra are also discussed.
Abstract
Through the integrated analysis of remote sensing and in situ data taken along the Front Range of Colorado, this study describes the interactions that occurred between a leeside arctic front and topographically modulated flows. These interactions resulted in nonclassical frontal behavior and structure across northeastern Colorado. The shallow arctic front initially advanced southwestward toward the Front Range foothills, before retreating eastward. Then, a secondary surge of arctic air migrated westward into the foothills. During its initial southwestward advance, the front exhibited obstacle-like, density-current characteristics. Its initial advance was interrupted by strong downslope northwesterly flow associated with a high-amplitude mountain wave downstream of the Continental Divide, and by a temporal decrease in the density contrast across the front due to diurnal heating in the cold air and weak cold advection in the warm air. The direction and depth of flow within the arctic air also influenced the frontal propagation.
The shallow, obstacle-like front actively generated both vertically propagating and vertically trapped gravity waves as it advanced into the downslope northwesterly flow, resulting in midtropospheric lenticular wave clouds aloft that tracked with the front. Because the front entered a region where strong downslope winds and mountain waves extended downstream over the high plains, the wave field in northeastern Colorado included both frontally forced and true mountain-forced gravity waves. A sequence of Scorer parameter profiles calculated from hourly observations reveals a sharp contrast between the prefrontal and postfrontal wave environments. Consequently, analytic resonant wave mode calculations based on the Scorer parameter profiles reveal that the waves supported in the postfrontal regime differed markedly from those supported in the prefrontal environment. This result is consistent with wind profiler observations that showed the amplitude of vertical motions decreasing substantially through 16 km above mean sea level (MSL) after the shallow frontal passage.
Abstract
Through the integrated analysis of remote sensing and in situ data taken along the Front Range of Colorado, this study describes the interactions that occurred between a leeside arctic front and topographically modulated flows. These interactions resulted in nonclassical frontal behavior and structure across northeastern Colorado. The shallow arctic front initially advanced southwestward toward the Front Range foothills, before retreating eastward. Then, a secondary surge of arctic air migrated westward into the foothills. During its initial southwestward advance, the front exhibited obstacle-like, density-current characteristics. Its initial advance was interrupted by strong downslope northwesterly flow associated with a high-amplitude mountain wave downstream of the Continental Divide, and by a temporal decrease in the density contrast across the front due to diurnal heating in the cold air and weak cold advection in the warm air. The direction and depth of flow within the arctic air also influenced the frontal propagation.
The shallow, obstacle-like front actively generated both vertically propagating and vertically trapped gravity waves as it advanced into the downslope northwesterly flow, resulting in midtropospheric lenticular wave clouds aloft that tracked with the front. Because the front entered a region where strong downslope winds and mountain waves extended downstream over the high plains, the wave field in northeastern Colorado included both frontally forced and true mountain-forced gravity waves. A sequence of Scorer parameter profiles calculated from hourly observations reveals a sharp contrast between the prefrontal and postfrontal wave environments. Consequently, analytic resonant wave mode calculations based on the Scorer parameter profiles reveal that the waves supported in the postfrontal regime differed markedly from those supported in the prefrontal environment. This result is consistent with wind profiler observations that showed the amplitude of vertical motions decreasing substantially through 16 km above mean sea level (MSL) after the shallow frontal passage.
Abstract
An algorithm to compute the magnitude of humidity gradient profiles from the measurements of the zeroth, first, and second moments of wind profiling radar (WPR) Doppler spectra was developed and tested. The algorithm extends the National Oceanic and Atmospheric Administration (NOAA)/Environmental Technology Laboratory (ETL) Advanced Signal Processing System (SPS), which provides quality control of radar data in the spectral domain for wind profile retrievals, to include the retrieval of humidity gradient profiles. The algorithm uses a recently developed approximate formula for correcting Doppler spectral widths for the spatial and temporal filtering effects. Data collected by a 3-beam 915-MHz WPR onboard the NOAA research vessel Ronald H. Brown (RHB) and a 5-beam 449-MHz WPR developed at the ETL were used in this study. The two datasets cover vastly different atmospheric conditions, with the 915-MHz shipborne system probing the tropical ocean atmosphere and the 449-MHz WPR probing continental winter upslope icing storm in the Colorado Front Range. Vaisala radiosonde measurements of humidity and temperature profiles on board the RHB and the standard National Weather Service (NWS) radiosonde measurements at Stapleton, Colorado, were used for comparisons. The cases chosen represent typical atmospheric conditions and not special atmospheric situations. Results show that using SPS-obtained measurements of the zeroth, first, and second spectral moments provide radar-obtained humidity gradient profiles up to 3 km AGL.
Abstract
An algorithm to compute the magnitude of humidity gradient profiles from the measurements of the zeroth, first, and second moments of wind profiling radar (WPR) Doppler spectra was developed and tested. The algorithm extends the National Oceanic and Atmospheric Administration (NOAA)/Environmental Technology Laboratory (ETL) Advanced Signal Processing System (SPS), which provides quality control of radar data in the spectral domain for wind profile retrievals, to include the retrieval of humidity gradient profiles. The algorithm uses a recently developed approximate formula for correcting Doppler spectral widths for the spatial and temporal filtering effects. Data collected by a 3-beam 915-MHz WPR onboard the NOAA research vessel Ronald H. Brown (RHB) and a 5-beam 449-MHz WPR developed at the ETL were used in this study. The two datasets cover vastly different atmospheric conditions, with the 915-MHz shipborne system probing the tropical ocean atmosphere and the 449-MHz WPR probing continental winter upslope icing storm in the Colorado Front Range. Vaisala radiosonde measurements of humidity and temperature profiles on board the RHB and the standard National Weather Service (NWS) radiosonde measurements at Stapleton, Colorado, were used for comparisons. The cases chosen represent typical atmospheric conditions and not special atmospheric situations. Results show that using SPS-obtained measurements of the zeroth, first, and second spectral moments provide radar-obtained humidity gradient profiles up to 3 km AGL.
Abstract
Horizontal winds in the presence of precipitation were measured routinely with a UHF (405 MHz) Wind Profiler. The profiler had five beam-pointing positions so independent measurements of horizontal winds could be compared to determine relative accuracy and precision. Large precipitation fall speeds are shown to cause very large errors (on the order of tens of meters per second) in the horizontal wind estimates when those fall speeds are not properly included in the estimates. But when the precipitation fall speeds are properly included, the errors are much smaller (2–4 m s−1), approaching those of clear air (1 m s−1). The decrease in the precision in precipitation is attributed largely to horizontal nonuniformity in precipitation from one antenna beam to another. A 4- or 5-beam profiler can detect conditions of horizontal inhomogeneity by virtue of its ability to make independent measurements of the winds from horizontally separated scattering volumes.
Abstract
Horizontal winds in the presence of precipitation were measured routinely with a UHF (405 MHz) Wind Profiler. The profiler had five beam-pointing positions so independent measurements of horizontal winds could be compared to determine relative accuracy and precision. Large precipitation fall speeds are shown to cause very large errors (on the order of tens of meters per second) in the horizontal wind estimates when those fall speeds are not properly included in the estimates. But when the precipitation fall speeds are properly included, the errors are much smaller (2–4 m s−1), approaching those of clear air (1 m s−1). The decrease in the precision in precipitation is attributed largely to horizontal nonuniformity in precipitation from one antenna beam to another. A 4- or 5-beam profiler can detect conditions of horizontal inhomogeneity by virtue of its ability to make independent measurements of the winds from horizontally separated scattering volumes.
Abstract
The first wind profiler for a demonstration network of wind profilers recently passed the milestone of 300 h of continuous operation. The horizontal wind component measurements taken during that period are compared with the WPL Platteville wind profiler and the NWS Denver rawinsonde. The differences between the network and WPL wind profilers have standard deviations of 2.30 m s−1 and 2.16 m s−1 for the u- and v-components, respectively. However, the WPL wind profiler ignores vertical velocity, whereas the network radar measures it and removes its effects from the u- and v-component measurements. The differences between the network wind profiler and the NWS rawinsonde (separated spatially by about 50 km) have standard deviations of 3.65 m s−1 and 3.06 m s−1 for the u- and v-components, respectively. These results are similar to those found in earlier comparison studies. Finally, the new network wind profiler demonstrates excellent sensitivity, consistently reporting measurements at all heights msl from 2 to nearly 18 km with very few outages.
Abstract
The first wind profiler for a demonstration network of wind profilers recently passed the milestone of 300 h of continuous operation. The horizontal wind component measurements taken during that period are compared with the WPL Platteville wind profiler and the NWS Denver rawinsonde. The differences between the network and WPL wind profilers have standard deviations of 2.30 m s−1 and 2.16 m s−1 for the u- and v-components, respectively. However, the WPL wind profiler ignores vertical velocity, whereas the network radar measures it and removes its effects from the u- and v-component measurements. The differences between the network wind profiler and the NWS rawinsonde (separated spatially by about 50 km) have standard deviations of 3.65 m s−1 and 3.06 m s−1 for the u- and v-components, respectively. These results are similar to those found in earlier comparison studies. Finally, the new network wind profiler demonstrates excellent sensitivity, consistently reporting measurements at all heights msl from 2 to nearly 18 km with very few outages.
Abstract
Two independent wind profiles were measured every hour during February 1986 with a five-beam, UHF (405 MHz) wind Profiler at Platteville, Colorado. Our analysis of the horizontal wind components over all heights for the entire month gave a standard deviation of about 1.3 m s−1 for the measurement errors one can expect for three-beam Profilers in clear air. This study demonstrated that it is important to include the effects of large vertical motion (caused by gravity waves or precipitation in the horizontal wind component measurements. These vertical motions were large enough to raise the error in the horizontal wind components to 1.7 m s−1 in two-beam configurations where no corrections are made for the vertical motion.
Abstract
Two independent wind profiles were measured every hour during February 1986 with a five-beam, UHF (405 MHz) wind Profiler at Platteville, Colorado. Our analysis of the horizontal wind components over all heights for the entire month gave a standard deviation of about 1.3 m s−1 for the measurement errors one can expect for three-beam Profilers in clear air. This study demonstrated that it is important to include the effects of large vertical motion (caused by gravity waves or precipitation in the horizontal wind component measurements. These vertical motions were large enough to raise the error in the horizontal wind components to 1.7 m s−1 in two-beam configurations where no corrections are made for the vertical motion.
Abstract
The design, construction, and first results are presented of a 915-MHz Doppler wind profiler that may be mounted on a moving platform such as a mobile land vehicle, ocean buoy, or a ship. The long dwell times in multiple beam directions, required for the detection of weak atmospheric radar echoes, are obtained by a passive phased array antenna, controlled by a motion control and monitoring (MCM) computer that acquires platform motion measurements and compensates in real time for the platform rotations. The platform translational velocities are accounted for in the signal processing system (SPS) before the calculation of the wind velocity profiles. The phased array antenna, MCM, and SPS are described, and radar-derived wind profiles are compared with those from rawinsonde balloons released during the first test cruise of the system, as the NOAA R/V Ronald H. Brown performed ship maneuvers.
Abstract
The design, construction, and first results are presented of a 915-MHz Doppler wind profiler that may be mounted on a moving platform such as a mobile land vehicle, ocean buoy, or a ship. The long dwell times in multiple beam directions, required for the detection of weak atmospheric radar echoes, are obtained by a passive phased array antenna, controlled by a motion control and monitoring (MCM) computer that acquires platform motion measurements and compensates in real time for the platform rotations. The platform translational velocities are accounted for in the signal processing system (SPS) before the calculation of the wind velocity profiles. The phased array antenna, MCM, and SPS are described, and radar-derived wind profiles are compared with those from rawinsonde balloons released during the first test cruise of the system, as the NOAA R/V Ronald H. Brown performed ship maneuvers.
Abstract
Two-dimensional simulations of the 11 January 1972 Boulder, Colorado, windstorm, obtained from 11 diverse nonhydrostatic models, are intercompared with special emphasis on the turbulent breakdown of topographically forced gravity waves, as part of the preparation for the Mesoscale Alpine Programme field phase. The sounding used to initialize the models is more representative of the actual lower stratosphere than those applied in previous simulations. Upper-level breaking is predicted by all models in comparable horizontal locations and vertical layers, which suggests that gravity wave breaking may be quite predictable in some circumstances. Characteristics of the breaking include the following: pronounced turbulence in the 13–16-km and 18–20-km layers positioned beneath a critical level near 21-km, a well-defined upstream tilt with height, and enhancement of upper-level breaking superpositioned above the low-level hydraulic jump. Sensitivity experiments indicate that the structure of the wave breaking was impacted by the numerical dissipation, numerical representation of the horizontal advection, and lateral boundary conditions. Small vertical wavelength variations in the shear and stability above 10 km contributed to significant changes in the structures associated with wave breaking. Simulation of this case is ideal for testing and evaluation of mesoscale numerical models and numerical algorithms because of the complex wave-breaking response.
Abstract
Two-dimensional simulations of the 11 January 1972 Boulder, Colorado, windstorm, obtained from 11 diverse nonhydrostatic models, are intercompared with special emphasis on the turbulent breakdown of topographically forced gravity waves, as part of the preparation for the Mesoscale Alpine Programme field phase. The sounding used to initialize the models is more representative of the actual lower stratosphere than those applied in previous simulations. Upper-level breaking is predicted by all models in comparable horizontal locations and vertical layers, which suggests that gravity wave breaking may be quite predictable in some circumstances. Characteristics of the breaking include the following: pronounced turbulence in the 13–16-km and 18–20-km layers positioned beneath a critical level near 21-km, a well-defined upstream tilt with height, and enhancement of upper-level breaking superpositioned above the low-level hydraulic jump. Sensitivity experiments indicate that the structure of the wave breaking was impacted by the numerical dissipation, numerical representation of the horizontal advection, and lateral boundary conditions. Small vertical wavelength variations in the shear and stability above 10 km contributed to significant changes in the structures associated with wave breaking. Simulation of this case is ideal for testing and evaluation of mesoscale numerical models and numerical algorithms because of the complex wave-breaking response.
Abstract
During the 2005 NOAA Hazardous Weather Testbed Spring Experiment two different high-resolution configurations of the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) model were used to produce 30-h forecasts 5 days a week for a total of 7 weeks. These configurations used the same physical parameterizations and the same input dataset for the initial and boundary conditions, differing primarily in their spatial resolution. The first set of runs used 4-km horizontal grid spacing with 35 vertical levels while the second used 2-km grid spacing and 51 vertical levels.
Output from these daily forecasts is analyzed to assess the numerical forecast sensitivity to spatial resolution in the upper end of the convection-allowing range of grid spacing. The focus is on the central United States and the time period 18–30 h after model initialization. The analysis is based on a combination of visual comparison, systematic subjective verification conducted during the Spring Experiment, and objective metrics based largely on the mean diurnal cycle of the simulated reflectivity and precipitation fields. Additional insight is gained by examining the size distributions of the individual reflectivity and precipitation entities, and by comparing forecasts of mesocyclone occurrence in the two sets of forecasts.
In general, the 2-km forecasts provide more detailed presentations of convective activity, but there appears to be little, if any, forecast skill on the scales where the added details emerge. On the scales where both model configurations show higher levels of skill—the scale of mesoscale convective features—the numerical forecasts appear to provide comparable utility as guidance for severe weather forecasters. These results suggest that, for the geographical, phenomenological, and temporal parameters of this study, any added value provided by decreasing the grid increment from 4 to 2 km (with commensurate adjustments to the vertical resolution) may not be worth the considerable increases in computational expense.
Abstract
During the 2005 NOAA Hazardous Weather Testbed Spring Experiment two different high-resolution configurations of the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) model were used to produce 30-h forecasts 5 days a week for a total of 7 weeks. These configurations used the same physical parameterizations and the same input dataset for the initial and boundary conditions, differing primarily in their spatial resolution. The first set of runs used 4-km horizontal grid spacing with 35 vertical levels while the second used 2-km grid spacing and 51 vertical levels.
Output from these daily forecasts is analyzed to assess the numerical forecast sensitivity to spatial resolution in the upper end of the convection-allowing range of grid spacing. The focus is on the central United States and the time period 18–30 h after model initialization. The analysis is based on a combination of visual comparison, systematic subjective verification conducted during the Spring Experiment, and objective metrics based largely on the mean diurnal cycle of the simulated reflectivity and precipitation fields. Additional insight is gained by examining the size distributions of the individual reflectivity and precipitation entities, and by comparing forecasts of mesocyclone occurrence in the two sets of forecasts.
In general, the 2-km forecasts provide more detailed presentations of convective activity, but there appears to be little, if any, forecast skill on the scales where the added details emerge. On the scales where both model configurations show higher levels of skill—the scale of mesoscale convective features—the numerical forecasts appear to provide comparable utility as guidance for severe weather forecasters. These results suggest that, for the geographical, phenomenological, and temporal parameters of this study, any added value provided by decreasing the grid increment from 4 to 2 km (with commensurate adjustments to the vertical resolution) may not be worth the considerable increases in computational expense.
Abstract
Winds measured with 915- and 404-MHz wind profilers are frequently found to have nonrandom errors as large as 15 m s−1 when compared to simultaneously measured rawinsonde winds. Detailed studies of these errors which occur only at night below about 4 km in altitude and have a pronounced seasonal pattern, indicate that they are due to the wind profilers' detection of migrating songbirds (passerines). Characteristics of contaminated data at various stages of data processing are described, including raw time series, individual spectra, averaged spectra, 30- or 60-s moments, 3- or 6-min winds, and hourly averaged winds. An automated technique for the rejection of contaminated data in historical datasets, based on thresholding high values of rnoment-level reflectivity and spectral width, is shown to be effective. Techniques designed for future wind profiter data acquisition systems are described that show promise for rejecting bird echoes, with the additional capability of being able to retrieve the true wind velocity in many instances. Finally, characteristics of bird migration revealed by wind profilers are described, including statistics of the spring (March–May) 1993 migration season determined from the 404-MHz Wind Profiler Demonstration Network (WPDN). During that time, contamination of moment data occurred on 43% of the nights monitored.
Abstract
Winds measured with 915- and 404-MHz wind profilers are frequently found to have nonrandom errors as large as 15 m s−1 when compared to simultaneously measured rawinsonde winds. Detailed studies of these errors which occur only at night below about 4 km in altitude and have a pronounced seasonal pattern, indicate that they are due to the wind profilers' detection of migrating songbirds (passerines). Characteristics of contaminated data at various stages of data processing are described, including raw time series, individual spectra, averaged spectra, 30- or 60-s moments, 3- or 6-min winds, and hourly averaged winds. An automated technique for the rejection of contaminated data in historical datasets, based on thresholding high values of rnoment-level reflectivity and spectral width, is shown to be effective. Techniques designed for future wind profiter data acquisition systems are described that show promise for rejecting bird echoes, with the additional capability of being able to retrieve the true wind velocity in many instances. Finally, characteristics of bird migration revealed by wind profilers are described, including statistics of the spring (March–May) 1993 migration season determined from the 404-MHz Wind Profiler Demonstration Network (WPDN). During that time, contamination of moment data occurred on 43% of the nights monitored.