Search Results

You are looking at 11 - 20 of 22 items for :

  • Author or Editor: Bradley F. Smull x
  • Refine by Access: All Content x
Clear All Modify Search
Robert A. Houze Jr.
,
Bradley F. Smull
, and
Peter Dodge

Abstract

Radar reflectivity and raingage data obtained during six springtimes indicate the types of mesoscale organization that occur in association with major rain events in Oklahoma (at least 25 mm of rain in 24 h over an area exceeding 12 500 km2). In these storms the primary rain area is found to be a contiguous region of precipitation 10s to 100s of km in scale that consists partly of deep convection and partly of stratiform rain. The patterns of rain formed by the convective and stratiform areas comprise a continuous spectrum of mesoscale structures. About two-thirds of the cases examined exhibited variations on the type of organization in which convective cells arranged in a moving line are followed by a region of stratiform rain. Storm organization was graded according to the degree to which it matched an idealized model of this “leading-line/trailing-stratiform” structure. The precipitation pattern was further graded according to whether its structure was relatively symmetric with respect to an axis normal to and passing through the midpoint of the line, or asymmetric, in which case the storm was biased toward having stronger, more discrete convective structure at the upwind (south or southwestern) end of the line and/or the most extensive stratiform precipitation behind the downwind (north to northeastern) end of the line. About one-third of the cases examined displayed much more chaotic, unclassifiable arrangements of convective and stratiform areas.

Among the cases with leading-line/trailing-stratiform structure, severe weather was most frequent in systems with (i) a strong degree of leading-line/trailing-stratiform structure, in which a solid, relatively uniform, are-shaped line had stratiform rain centered symmetrically behind it, and (ii) a weaker degree of leading-line/trailing-stratiform structure in which a southwest-northeast line was biased toward having narrow, intensely convective, irregularly spaced cell structure at its southwestern (upwind) end and stratiform rain confined to the region behind the broader northeastern (downwind) portion of the line. Although all mesoscale organization types were characterized by all types of severe weather, the type (ii) cases were the most prolific category in terms of tornado and hail production, while type (i) cases were prone to be associated with flooding. The chaotic, unclassifiable cases, which exhibited no line organization, had just as much severe weather as the cases with line organization, but were more likely to produce hail and somewhat less likely to produce tornadoes and flooding than the systems with line structure.

Major rain events occurred whenever a mesoscale convective complex (MCC) was passing over the study area, unless the MCC was dissipating or merely skirting the area. However, 75% of the major rain events occurred under cloud shields that failed to meet the MCC criteria explicitly, although they often resembled MCCs qualitatively. No particular type of mesoscale radar-echo organization was favored when cloud shields meeting the MCC criteria were observed. A slight preference for the more chaotic type of organization was suggested; however, the data sample is not large enough for this finding to be regarded as conclusive.

Mean soundings and hodographs generally show no sign of a low-level jet in environments associated with chaotically arranged rain areas that lacked any line structure. On the other hand, a low-level jet and resulting curved hodograph were typically associated with cases in which line organization was evident. The wind shear in the low-to-mid troposphere, the bulk Richardson number and other familiar parameters characterizing squall fine environments are consistent with results from recent modeling studies. When leading-line/trailing-stratiform structure was present, the cross-line shear in the environment was of a magnitude associated with model simulations in which a rearward sloping updraft circulation favorable to trailing-stratiform anvil formation quickly develops. The along-line component of shear was greater when the squall system structure was of the asymmetric type and the degree of leading-line/trailing-stratiform structure was not as strong, i.e. in those mesoscale systems favoring tornado occurrence.

Full access
Gregory J. Stumpf
,
Richard H. Johnson
, and
Bradley F. Smull

Abstract

An analysis has been carried out of the surface pressure field in a highly complex mesoscale convective system that occurred on 3-4 June 1985 during the Oklahoma-Kansas Preliminary Regional Expeximent for STORM-Central (OK PRE-STORM). During its mature stage the storm consisted of two primary intersecting convective bands approximately 200 km in length, one oriented NIE-SW (to the north) and the other N-S (to the south), with a stratiform precipitation region extending to the northwest of the bands. Stratifonn precipitation was weak to nonexistent in the southernmost portion of the storm.

Although the organization of the storm was complex, the surface pressure field resembled those associated with simpler, quasi-linear squall systems containing trading stratifom regions: a mesohigh existed neat the convective line and a wake low was observed to the rear of the stratiform region. A strong system-relative, descending rear inflow jet was observed in the northern part of the storm near the wake low. Significantly, only the northern portion of the storm had a trailing stratiform region and it was only in that region that a wake low and a descending mu inflow jet occurred.

An analysis of dual-Doppler radar data taken in the northern part of the storm indicates remarkably strong, localized subsidence at low levels within the rear inflow jet, up to 6 m s−1 on a 10-km scale at the back edge of the trailing stratiform region. The maximum sinking occurred (a) to the rear of the highest reflectivity portion of the trailing stratiform region, (b) within the region of the strongest low-level reflectivity gradient, and (c) was coincident with the strongest surface pressure gradient [up to 2 mb (5 km)−1] ahead of the wake low center.

These findings indicate that the trailing stratiform precipitation regions of mesoscale convective systems can be dynamically significant phenomena, generating rapidly descending inflow jets at their back edges and, con-sequently, producing pronounced lower-tropospheric warming, intense surface pressure gradients and strong low-level winds.

Full access
Cheng-Ku Yu
,
Ben Jong-Dao Jou
, and
Bradley F. Smull

Abstract

The formative stage of a long-lived mesoscale cyclonic vortex was captured by the NOAA P-3 aircraft as it investigated a developing mesoscale convective system (MCS) near the southeastern coast of Taiwan on 16 June 1987 during the Taiwan Area Mesoscale Experiment. The supporting environment of the mesovortex was characterized by an exceptionally moist atmosphere and moderate ambient vertical shear through a deep layer from the near surface to ∼6 km, with much weaker shear and winds aloft. In addition, a pronounced low-level mesoscale shear/convergence zone, which resulted from the interaction of southeasterly flow with northeasterly flow confined to the near-coast region, existed in the vicinity of the observed mesovortex. Composite three-dimensional wind fields derived via pseudo-dual-Doppler synthesis show the vortex had a horizontal diameter expanding from ∼40 km to ∼70 km in the lower to midtroposphere, respectively, and exhibited considerable tilt through this layer. Contrary to previously documented mesovortices, which have generally been fully developed and observed in the stratiform region of mature-to-decaying MCSs, the present vortex was intimately coupled to convective precipitation within this developing MCS. This study provides unique observational evidence that under appropriate environmental conditions a long-lasting mesovortex may originate in the convective region of an MCS.

Full access
Brian A. Colle
,
Yanluan Lin
,
Socorro Medina
, and
Bradley F. Smull

Abstract

This paper describes the kinematic and precipitation evolution accompanying the passage of a cold baroclinic trough over the Central Oregon Coast Range and Cascades during 4–5 December 2001 of the second Improvement of Microphysical Parameterization through Observational Verification Experiment (IMPROVE-2) field project. In contrast to previously documented IMPROVE-2 cases, the 4–5 December event featured weaker cross-barrier winds (15–20 m s−1), weaker moist static stability (Nm < 0.006 s−1), and convective cells that preferentially intensified over Oregon’s modest coastal mountain range. These cells propagated eastward and became embedded within the larger orographic precipitation shield over the windward slopes of the Cascades. The Weather Research and Forecasting Model (version 2.2) at 1.33-km grid spacing was able to accurately replicate the observed evolution of the precipitation across western Oregon. As a result of the convective cell development, the precipitation enhancement over the Coast Range (500–1000 m MSL) was nearly as large as that over the Cascades (1500–2000 m MSL). Simulations selectively eliminating the elevated coastal range and differential land–sea friction across the Pacific coastline illustrate that both effects were important in triggering convection and in producing the observed coastal precipitation enhancement. A sensitivity run employing a smoothed representation of the Cascades illustrates that narrow ridges located on that barrier’s windward slope had a relatively small (<5%) impact on embedded convection and overall precipitation amounts there. This is attributed to the relatively weak gravity wave motions and low freezing level, which limited precipitation growth by riming.

Full access
Brian A. Colle
,
Bradley F. Smull
, and
Ming-Jen Yang

Abstract

This paper identifies mechanisms that led to the observed rapid evolution of a landfalling weak cold front along the steep mountainous northern California coast on 1 December 1995. This event was simulated down to 3-km horizontal grid spacing using the Pennsylvania State University–NCAR Mesoscale Model version 5 (MM5). The MM5 simulation reproduced the basic features such as the timing, location, and orientation of the cold front and associated precipitation evolution, as well as the tendency for enhanced precipitation to extend ∼50–100 km upwind of the coastal barrier, with the heaviest amounts occurring over the windward slopes (0–20 km inland); locally, however, the model underestimated the magnitude of the prefrontal terrain-enhanced flow by as much as 30% since the simulated low-level static stability was weaker than observed.

The MM5 simulations illustrate the complex thermal, wind, and precipitation structures in the coastal zone. Upstream flow blocking by the steep coastal terrain led to the development of a mesoscale pressure ridge and prefrontal terrain-enhanced winds exceeding 25 m s−1. Because of the irregular coastline and highly three-dimensional terrain, the low-level winds were not uniform along the coast. Rather, prefrontal southerly flow was significantly reduced downwind of the major capes (viz. Mendocino and Blanco), while there were localized downgradient accelerations adjacent to regions of higher topography along uninterrupted stretches of coastline. Terrain–front interactions resulted in a slowing of the front as the system made landfall, and blocking contributed to a “tipped forward” baroclinic structure below 800 mb.

The MM5 was used to investigate some of the reasons for the rapid intensification of the frontal temperature gradient and banded precipitation in the coastal zone. During this event the large-scale vertical motions increased in an environment favorable for moist convection, and a simulation without coastal topography illustrated rapid development of coastal precipitation even in the absence of local terrain influences. The coastal topography helped to further enhance and collapse the thermal gradient and associated cold-frontal rainband through enhanced deformation frontogenesis associated with the prefrontal terrain-enhanced flow. Diabatic effects from precipitation are also shown to have been important in organizing the precipitation in the coastal zone and further enhancing the frontal temperature gradient.

Full access
Maribeth Stolzenburg
,
Thomas C. Marshall
,
W. David Rust
, and
Bradley F. Smull

Abstract

Five soundings of the electric field and thermodynamic properties were made in a mesoscale convective system (MCS) that occurred in Oklahoma and Texas on 2–3 June 1991. Airborne Doppler radar data were obtained from three passes through the stratiform echo. From these electrical, kinematical, and reflectivity measurements, a conceptual model of the electrical structure of an MCS is developed.

Low-level reflectivity data from the storm's mature and dissipating stages show typical MCS characteristics. The leading convective region is convex forward, and the back edge of the stratiform echo is notched inward. The maximum areal extent of the low-level echo is about 250 km × 550 km, and the radar bright band is intense (reflectivity 45–50 dBZ) through an area of at least 50 km × 100 km. The reflectivity above the bright band is horizontally stratified with decreasing intensity and echo-top height toward the rear of the system. Analyses of the velocity data reveal a convective-line-relative flow structure of front-to-rear flow and mesoscale ascent aloft, and weak rear inflow and descent below about 5 km.

The electric field soundings are similar over a period of 3 h and a horizontal scale of 100 km across the stratiform region, suggesting that the charge structure is nearly steady state and the charge regions are horizontally extensive and layered. The basic charge structure consists of four layers: a 1–3-km-deep region of positive charge (density ρ ≈ +0.2 nC m−3) between 6 and 10 km, negative charge (ρ ≈ −1.0–2.5 nC m−3) between 5 and 6 km, positive charge (ρ ≈ +1.0–3.0 nC m−3) near 0°C, and negative charge (ρ ≈ −0.5 nC m−3) near cloud base. The upper positive and densest negative charge layers could result from advection of charge from the convective region. The negative charge layer may be augmented by noninductive collisional charging in the stratiform region. The positive charge near 0°C is probably caused by one or more in situ charging mechanisms. The negative charge near cloud base is likely the result of screening layer formation. In addition to the basic four charge layers, positive charge is found below the cloud in each sounding, and in the two soundings closest to the convection (70–100 km distant) there is a low-density negative charge region near echo top.

Full access
Terry J. Schuur
,
W. David Rust
,
Bradley F. Smull
, and
Thomas C. Marshall

Abstract

An electric field sounding through the transition zone precipitation minimum that trailed an Oklahoma squall line on 18 June 1987 provides information about the electrical structure within a midlatitude trailing stratiform cloud. A single-Doppler radar analysis concurrent with the flight depicts a kinematic structure dominated by two mesoscale flow regimes previously identified in squall-line systems: a strong midlevel, front-to-rear flow coinciding with the stratiform cloud layer and a descending rear inflow that sloped from 6.5 km AGL at the stratiform cloud's trailing edge to 1.5 km AGL at the convective line. Electric field magnitudes as high as 113 kV m−1 were observed by the electric field sounding, which reveals an electric field structure comparable in magnitude and complexity to structures reported for convective cells of thunderstorms. The charge regions inferred with an approximation to Gauss' law have charge density magnitudes of 0.2–4.1 nC m−3 and vertical thicknesses of 130–1160 m; these values, too, are comparable to those reported for thunderstorm cells. In agreement with previous studies, an analysis of the lightning data revealed a “bipolar” cloud-to-ground lightning pattern with positive flashes being relatively more common in the stratiform region.

From the analysis, we conclude that the stratiform region electrical structure may have been advected from the squall line convective cells as the in-cloud charge regions were primarily found within the front-to-rear flow. Screening layers were found at the lower and upper cloud boundaries. In situ microphysical charging also seems to be a possible source of charge in the stratiform region. We hypothesize that the radar-derived similarities of this system to those previously documented suggests that the newly-documented stratiform electrical structure might also be representative of this type of mesoscale convective system.

Full access
Alexandre O. Fierro
,
Joanne Simpson
,
Margaret A. LeMone
,
Jerry M. Straka
, and
Bradley F. Smull

Abstract

An airflow trajectory analysis was carried out based on an idealized numerical simulation of the nocturnal 9 February 1993 equatorial oceanic squall line observed over the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) ship array. This simulation employed a nonhydrostatic numerical cloud model, which features a sophisticated 12-class bulk microphysics scheme. A second convective system that developed immediately south of the ship array a few hours later under similar environmental conditions was the subject of intensive airborne quad-Doppler radar observations, allowing observed airflow trajectories to be meaningfully compared to those from the model simulation. The results serve to refine the so-called hot tower hypothesis, which postulated the notion of undiluted ascent of boundary layer air to the high troposphere, which has for the first time been tested through coordinated comparisons with both model output and detailed observations.

For parcels originating ahead (north) of the system near or below cloud base in the boundary layer (BL), the model showed that a majority (>62%) of these trajectories were able to surmount the 10-km level in their lifetime, with about 5% exceeding 14-km altitude, which was near the modeled cloud top (15.5 km). These trajectories revealed that during ascent, most air parcels first experienced a quick decrease of equivalent potential temperature (θe ) below 5-km MSL as a result of entrainment of lower ambient θe air. Above the freezing level, ascending parcels experienced an increase in θe with height attributable to latent heat release from ice processes consistent with previous hypotheses. Analogous trajectories derived from the evolving observed airflow during the mature stage of the airborne radar–observed system identified far fewer (∼5%) near-BL parcels reaching heights above 10 km than shown by the corresponding simulation. This is attributed to both the idealized nature of the simulation and to the limitations inherent to the radar observations of near-surface convergence in the subcloud layer.

This study shows that latent heat released above the freezing level can compensate for buoyancy reduction by mixing at lower levels, thus enabling air originating in the boundary layer to contribute to the maintenance of both local buoyancy and the large-scale Hadley cell despite acknowledged dilution by mixing along updraft trajectories. A tropical “hot tower” should thus be redefined as any deep convective cloud with a base in the boundary layer and reaching near the upper-tropospheric outflow layer.

Full access
Walter A. Petersen
,
Robert C. Cifelli
,
Steven A. Rutledge
,
Brad S. Ferrier
, and
Bradley F. Smull

Shipborne Doppler radar operations were conducted over the western Pacific warm pool during TOGA COARE using the Massachusetts Institute of Technology and NOAA TOGA C-band Doppler radars. Occasionally the ships carrying these radars were brought to within 50 km of each other to conduct coordinated dual-Doppler scanning. The dual-Doppler operations were considered a test of the logistical and engineering constraints associated with establishing a seagoing dual-Doppler configuration. A very successful dual-Doppler data collection period took place on 9 February 1993 when an oceanic squall line developed, intensified, and propagated through the shipborne dual-Doppler lobes. Later on the same day, NOAA P-3 aircraft sampled a more intense squall line located approximately 400 km to the southeast of the shipborne operations. This study provides an overview of the shipborne dual-Doppler operations, followed by a comparison of the kinematic and precipitation structures of the convective systems sampled by the ships and aircraft. Special emphasis is placed on interpretation of the results relative to the electrical characteristics of each system.

Soundings taken in the vicinity of the ship and aircraft cases exhibited similar thermodynamic instability and shear. Yet Doppler radar analyses suggest that the aircraft case exhibited a larger degree of low-level forcing, stronger updrafts, more precipitation mass in the mixed-phase region of the clouds, and a relatively higher degree of electrification as evidenced by lightning observations. Conversely, convection in the ship case, while producing maximum cloud-top heights of 16 km, was associated with relatively weaker low-level forcing, weaker vertical development above the −5°C level, moderate electric fields at the surface, and little detectable lightning. Differences in the kinematic and precipitation structures were further manifested in composite vertical profiles of mean convective precipitation and vertical motion. When considered relative to the electrical properties of the two systems, the results provide further circumstantial evidence to support previously hypothesized vertical velocity and radar reflectivity thresholds that must be exceeded in the 0° to −20°C regions of tropical cumulonimbi prior to the occurrence of lightning.

Full access
Justin A. W. Cox
,
W. James Steenburgh
,
David E. Kingsmill
,
Jason C. Shafer
,
Brian A. Colle
,
Olivier Bousquet
,
Bradley F. Smull
, and
Huaqing Cai

Abstract

The influence of orographic circulations on the precipitation structure of a Wasatch Mountain winter storm is examined using observations collected during the third intensive observing period (IOP3) of the Intermountain Precipitation Experiment (IPEX). The event featured the passage of a midlevel (700–550 hPa) trough followed 3 h later by a surface trough. Prior to and during the midlevel trough passage, large-scale southwesterly flow impinged on the Wasatch Mountains. Low-level confluence was observed between this southwesterly flow and along-barrier southerly flow within 20–40 km of the Wasatch Mountains. This confluence zone, which moved toward the Wasatch Mountains during and following the passage of the midlevel trough, was accompanied by low-level convergence and precipitation enhancement over the upstream lowlands. Dual-Doppler analysis revealed the presence of a shallow along-barrier jet near the base of the Wasatch Mountains that was surmounted by southwesterly cross-barrier flow at mid- and upper-mountain levels. This cross-barrier flow produced strong (1–2 m s−1) ascent as it interacted with the steep windward slopes of the Wasatch Mountains, where precipitation was roughly double that observed in the lowlands upstream. Flow deflection and splitting were also observed near the highest terrain features. A narrow region of strong subsidence, which at times exceeded 2 m s−1, was found to the lee of the Wasatch and, based on radar imagery, appeared to modulate hydrometeor spillover aloft. Processes contributing to the evolution of the near-barrier flow field, including topographic blocking, diabatic effects, and surface friction contrasts, are discussed.

Full access