Search Results

You are looking at 11 - 20 of 21 items for

  • Author or Editor: Brian K. Haus x
  • Refine by Access: All Content x
Clear All Modify Search
Alina Galchenko
,
Alexander V. Babanin
,
Dmitry Chalikov
,
I. R. Young
, and
Brian K. Haus

Abstract

Evolution of nonlinear wave groups to breaking under wind forcing was studied by means of a fully nonlinear numerical model and in a laboratory experiment. Dependence of distance to breaking and modulation depth (height ratio of the highest and the lowest waves in a group) on wind forcing was described. It was shown that in the presence of a certain wind forcing both distance to breaking and modulation depth decrease; the latter signifies slowing down of the instability growth. It was also shown that wind forcing significantly reduces the energy loss in a single breaking event.

Full access
Lucy R. Wyatt
,
Guennadi Liakhovetski
,
Hans C. Graber
, and
Brian K. Haus

Abstract

Ocean Surface Current Radar (OSCR) HF radar measurements of ocean waves and currents were made during the Shoaling Waves Experiment (SHOWEX) in the fall of 1999. During some periods, at some locations, good quality wave measurements were obtained. Limitations in the wave measurement capability due to OSCR hardware, deployment configuration, signal-to-noise ratio, and antenna sidelobes are identified and discussed. A short period of large currents in the presence of antenna pattern distortion is identified as the source of the main errors in the wave measurements.

Full access
Nathan J. M. Laxague
,
Brian K. Haus
,
David G. Ortiz-Suslow
, and
Hans C. Graber

Abstract

Surface wind stress is a crucial driver of upper-ocean processes, impacting air–sea gas flux, wind-wave development, and material transport. Conventional eddy covariance (EC) processing requires imposing a fixed averaging window on the wind velocity time series in order to estimate the downward flux of momentum. While this method has become the standard means of directly measuring the wind stress, the use of a fixed averaging interval inherently constrains one’s ability to resolve transient signals that may have net effects on the air–sea interactions. Here we utilize the wavelet transform to develop a new technique for directly quantifying the wind stress magnitude from the wavelet coscalogram products. The time averages of these products evaluated at the scale of maximum amplitude are highly correlated with the EC estimates (R 2 = 0.99; 5-min time windows), suggesting that stress is particularly sensitive to the dominant turbulent eddies. By taking advantage of the new method’s high temporal resolution, transient wind forcing and its dominant scales may be explicitly computed and analyzed. This technique will allow for more general investigations into air–sea dynamics under nonstationary or spatially inhomogeneous conditions, such as within the nearshore region.

Full access
David G. Ortiz-Suslow
,
Brian K. Haus
,
Sanchit Mehta
, and
Nathan J. M. Laxague

Abstract

Quantifying the amount and rate of sea spray production at the ocean surface is critical to understanding the effect spray has on atmospheric boundary layer processes (e.g., tropical cyclones). Currently, only limited observational data exist that can be used to validate available droplet production models. To help fill this gap, a laboratory experiment was conducted that directly observed the vertical distribution of spume droplets above actively breaking waves. The experiments were carried out in hurricane-force conditions (10-m equivalent wind speed of 36–54 m s−1), and the observed particles ranged in radius r from 80 to nearly 1400 μm. High-resolution profiles (3 mm) were reconstructed from optical imagery taken within the boundary layer, ranging from 2 to 6 times the local significant wave height. Number concentrations were observed to have a radius dependence proportional to r −3 leading to spume production estimates that diverge from typical source models, which tend to exhibit a radius falloff closer to r −8. This was particularly significant for droplets with radii circa 1 mm whose modeled production rates were several orders of magnitude less than the rates expected from the observed concentrations. The vertical dependence of the number concentrations was observed to follow a logarithmic profile, which does not confirm the power-law relationship expected by a conventional spume generation parameterization. These observations bear significant implications for efforts to characterize the role these large droplets play in boundary layer processes under high-wind conditions.

Full access
Brian K. Haus
,
Lynn K. Shay
,
Paul A. Work
,
George Voulgaris
,
Rafael J. Ramos
, and
Jorge Martinez-Pedraja

Abstract

Wave-height observations derived from single-site high-frequency (HF) radar backscattered Doppler spectra are generally recognized to be less accurate than overlapping radar techniques but can provide significantly larger sampling regions. The larger available wave-sampling region may have important implications for observing system design. Comparison of HF radar–derived wave heights with acoustic Doppler profiler and buoy data revealed that the scale separation between the Bragg scattering waves and the peak energy-containing waves may contribute to errors in the single-site estimates in light-to-moderate winds. A wave-height correction factor was developed that explicitly considers this scale separation and eliminates the trend of increasing errors with increasing wind speed.

Full access
Lynn K. Shay
,
Thomas M. Cook
,
Zachariah R. Hallock
,
Brian K. Haus
,
Hans C. Graber
, and
Jorge Martinez

Abstract

As part of the Naval Research Laboratory and Office of Naval Research sponsored Physics of Coastal Remote Sensing Research Program, an experiment was conducted in September–October 1996 off Virginia Beach. Ocean surface currents were measured using the high-frequency (25.4 MHz) mode of the Ocean Surface Current Radar at 20-min intervals at a horizontal resolution of 1 km over an approximate 30 km × 44 km domain. Comparisons to subsurface current measurements at 1–2 m beneath the surface from two broadband acoustic Doppler current profilers (ADCP) revealed good agreement to the surface currents. Regression analyses indicated biases of 4 and −3 cm s−1 for cross-shelf and along-shelf currents, respectively, where slopes were O(1) with correlation coefficients of 0.8.

Nine months of sea level heights from the NOAA National Ocean Survey Chesapeake Bay Bridge Tunnel tidal station revealed an energetic M 2 tidal component having an amplitude of 37.5 cm and a phase of 357°. The S 2 tidal constituent had an amplitude of 7 cm and a phase of 49°. By contrast, the diurnal band (K 1, O 1) tidal constituents were considerably weaker with amplitudes of 1–5 cm. From 19 days of HF-derived surface currents, the M 2 and S 2 tidal current amplitudes had a maximum of about 50 and 8 cm s−1 at the Chesapeake Bay mouth, respectively. Explained variances associated with these four tidal current constituents were a maximum of 60% at the mouth and decreased southward. Analyses at the ADCP moorings indicated that the semidiurnal tidal currents were predominantly barotropic with cross-shelf and along-shelf currents of 18 and 10 cm s−1. Energetic semidiurnal tidal currents were highly correlated over the HF-radar domain, and the phase angles indicated a consistent anticyclonic veering of the M 2 tidal current with along-shelf distance from the mouth. Normalized tidal current vorticities by the local Coriolis parameter (f), which represent a proxy for the Rossby number, were ±0.25f near the mouth and ±0.05f in the southern part of the domain for the M 2 constituent. Simulations from a linear, barotropic model were highly correlated with observed M 2 tidal currents at 85 points within the HF-radar domain, consistent with the premise of weakly nonlinear flows.

Full access
Björn Lund
,
Brian K. Haus
,
Jochen Horstmann
,
Hans C. Graber
,
Ruben Carrasco
,
Nathan J. M. Laxague
,
Guillaume Novelli
,
Cédric M. Guigand
, and
Tamay M. Özgökmen

Abstract

The Lagrangian Submesoscale Experiment (LASER) involved the deployment of ~1000 biodegradable GPS-tracked Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) drifters to measure submesoscale upper-ocean currents and their potential impact on oil spills. The experiment was conducted from January to February 2016 in the Gulf of Mexico (GoM) near the mouth of the Mississippi River, an area characterized by strong submesoscale currents. A Helmholtz-Zentrum Geesthacht (HZG) marine X-band radar (MR) on board the R/V F. G. Walton Smith was used to locate fronts and eddies by their sea surface roughness signatures. The MR data were further processed to yield near-surface current maps at ~500-m resolution up to a maximum range of ~3 km. This study employs the drifter measurements to perform the first comprehensive validation of MR near-surface current maps. For a total of 4130 MR–drifter pairs, the root-mean-square error for the current speed is 4 cm and that for the current direction is 12°. The MR samples currents at a greater effective depth than the CARTHE drifters (1–5 m vs ~0.4 m). The mean MR–drifter differences are consistent with a wave- and wind-driven vertical current profile that weakens with increasing depth and rotates clockwise from the wind direction (by 0.7% of the wind speed and 15°). The technique presented here has great potential in observational oceanography, as it allows research vessels to map the horizontal flow structure, complementing the vertical profiles measured by ADCP.

Open access
Nathan J. M. Laxague
,
Brian K. Haus
,
David G. Ortiz-Suslow
,
Conor J. Smith
,
Guillaume Novelli
,
Hanjing Dai
,
Tamay Özgökmen
, and
Hans C. Graber

Abstract

Estimation of near-surface current is essential to the estimation of upper-ocean material transport. Wind forcing and wave motions are dominant in the near-surface layer [within O(0.01) m of the surface], where the highly sheared flows can differ greatly from those at depth. This study presents a new method for remotely measuring the directional wind and wave drift current profile near to the surface (between 0.01 and 0.001 m for the laboratory and between 0.1 and 0.001 m for the field). This work follows the spectral analysis of high spatial ( 0.002 m) and temporal resolution ( 60 Hz) wave slope images, allowing for the evaluation of near-surface current characteristics without having to rely on instruments that may disturb the flow. Observations gathered in the 15 m × 1 m × 1 m wind-wave flume at the University of Miami’s Surge-Structure-Atmosphere Interaction (SUSTAIN) facility show that currents retrieved via this method agree well with the drift velocity of camera-tracked dye. Application of this method to data collected in the mouth of the Columbia River (MCR) indicates the presence of a near-surface current component that departs considerably from the tidal flow and may be steered by the wind stress. These observations demonstrate that wind speed–based parameterizations alone may not be sufficient to estimate wind drift and to hold implications for the way in which surface material (e.g., debris or spilled oil) transport is estimated when atmospheric stress is of relatively high magnitude or is steered off the mean wind direction.

Full access
Guillaume Novelli
,
Cédric M. Guigand
,
Charles Cousin
,
Edward H. Ryan
,
Nathan J. M. Laxague
,
Hanjing Dai
,
Brian K. Haus
, and
Tamay M. Özgökmen

Abstract

Targeted observations of submesoscale currents are necessary to improve science’s understanding of oceanic mixing, but these dynamics occur at spatiotemporal scales that are currently challenging to detect. Prior studies have recently shown that the submesoscale surface velocity field can be measured by tracking hundreds of surface drifters released in tight arrays. This strategy requires drifter positioning to be accurate, frequent, and to last for several weeks. However, because of the large numbers involved, drifters must be low-cost, compact, easy to handle, and also made of materials harmless to the environment. Therefore, the novel Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) drifter was designed following these criteria to facilitate massive sampling of near-surface currents during the Lagrangian Submesoscale Experiment (LASER). The drifting characteristics were determined under a wide range of currents, waves, and wind conditions in laboratory settings. Results showed that the drifter accurately follows the currents in the upper 0.60 m, that it presents minimal wave rectification issues, and that its wind-induced slip velocity is less than 0.5% of the neutral wind speed at 10 m. In experiments conducted in both coastal and deep ocean conditions under wind speeds up to 10 m s−1, the trajectories of the traditional Coastal Ocean Dynamics Experiment (CODE) and the CARTHE drifters were nearly identical. Following these tests, 1100 units were produced and deployed during the LASER campaign, successfully tracking submesoscale and mesoscale features in the Gulf of Mexico. It is hoped that this drifter will enable high-density sampling near metropolitan areas subject to stress by the overpopulation, such as lakes, rivers, estuaries, and environmentally sensitive areas, such as the Arctic.

Full access
Björn Lund
,
Ruben Carrasco
,
Hanjing Dai
,
Hans C. Graber
,
Cédric M. Guigand
,
Brian K. Haus
,
Jochen Horstmann
,
John A. Lodise
,
Guillaume Novelli
,
Tamay Özgökmen
,
Michael A. Rebozo
,
Edward H. Ryan
, and
Michael Streßer

Abstract

Our unmanned aerial system (UAS) current mapping is based on optical video data of the sea surface. We use three-dimensional fast Fourier transform and least squares fitting to measure the surface waves’ phase velocities and the currents via the linear dispersion relationship. Our UAS is a low-cost off-the-shelf quadcopter with inaccurate camera position and attitude measurements, which may cause spurious currents as large as the signal. We present a novel wave-based UAS heading and position correction, improving the image rectification accuracy by a factor of ~3.5 and the current measurements’ temporal repeatability by factors of 1.8–4.8. This validation study maps the currents at high spatiotemporal resolution (5 m and 4 s) across the ~700-m-wide tidally dominated Bear Cut channel in Miami, Florida. The UAS currents are compared to flotsam tracks, obtained through automated UAS video object detection and tracking, drifter tracks, and acoustic Doppler current profiler measurements. The root-mean-square errors of the cross- and along-channel currents are better than 0.03 m s−1 for the flotsam comparison and better than 0.06 m s−1 for the drifter comparison; the latter revealed a 0.06 m s−1 along-wind bias due to wind- and wave-driven vertical current shear. UAS current mapping could be used to monitor river discharge, buoyant pollutants, or submesoscale fronts and eddies; the proposed wave-based heading and position correction enables its use in areas without ground control points.

Open access