Search Results

You are looking at 11 - 15 of 15 items for

  • Author or Editor: C. Bruce Baker x
  • Refine by Access: All Content x
Clear All Modify Search
Fong Ngan
,
Christopher P. Loughner
,
Sonny Zinn
,
Mark Cohen
,
Temple R. Lee
,
Edward Dumas
,
Travis J. Schuyler
,
C. Bruce Baker
,
Joseph Maloney
,
David Hotz
, and
George Mathews

Abstract

A series of meteorological measurements with a small uncrewed aircraft system (sUAS) was collected at Oliver Springs Airport in Tennessee. The sUAS provides a unique observing system capable of obtaining vertical profiles of meteorological data within the lowest few hundred meters of the boundary layer. The measurements benefit simulated plume predictions by providing more accurate meteorological data to a dispersion model. The sUAS profiles can be used directly to drive HYSPLIT dispersion simulations. When using sUAS data covering a small domain near a release and meteorological model fields covering a larger domain, simulated pollutants may be artificially increased or decreased near the domain boundary because of inconsistencies in the wind fields between the two meteorological inputs. Numerical experiments using the Weather Research and Forecasting (WRF) Model with observational nudging reveal that incorporating sUAS data improves simulated wind fields and can significantly affect mixing characteristics of the boundary layer, especially during the morning transition period of the planetary boundary layer. We conducted HYSPLIT dispersion simulations for hypothetical releases for three case study periods using WRF meteorological fields with and without assimilating sUAS measurements. The comparison of dispersion results on 15 and 16 December 2021 shows that using sUAS observational nudging is more significant under weak synoptic conditions than under strong influences from regional weather. Very different dispersion results were introduced by the meteorological fields used. The observational nudging produced not just an sUAS-nudged wind flow but also adjusted meteorological fields that further impacted the mixing calculation in HYSPLIT.

Open access
Howard J. Diamond
,
Thomas R. Karl
,
Michael A. Palecki
,
C. Bruce Baker
,
Jesse E. Bell
,
Ronald D. Leeper
,
David R. Easterling
,
Jay H. Lawrimore
,
Tilden P. Meyers
,
Michael R. Helfert
,
Grant Goodge
, and
Peter W. Thorne

The year 2012 marks a decade of observations undertaken by the U.S. Climate Reference Network (USCRN) under the auspices of NOAA's National Climatic Data Center and Atmospheric Turbulence and Diffusion Division. The network consists of 114 sites across the conterminous 48 states, with additional sites in Alaska and Hawaii. Stations are installed in open (where possible), rural sites very likely to have stable land-cover/use conditions for several decades to come. At each site a suite of meteorological parameters are monitored, including triple redundancy for the primary air temperature and precipitation variables and for soil moisture/temperature. Instrumentation is regularly calibrated to National Institute for Standards and Technology (NIST) standards and maintained by a staff of expert engineers. This attention to detail in USCRN is intended to ensure the creation of an unimpeachable record of changes in surface climate over the United States for decades to come. Data are made available without restriction for all public, private, and government use. This article describes the rationale for the USCRN, its implementation, and some of the highlights of the first decade of operations. One critical use of these observations is as an independent data source to verify the existing U.S. temperature record derived from networks corrected for nonhomogenous histories. Future directions for the network are also discussed, including the applicability of USCRN approaches for networks monitoring climate at scales from regional to global. Constructive feedback from end users will allow for continued improvement of USCRN in the future and ensure that it continues to meet stakeholder requirements for precise climate measurements.

Full access
C. Bruce Baker
,
Michael Cosh
,
John Bolten
,
Mark Brusberg
,
Todd Caldwell
,
Stephanie Connolly
,
Iliyana Dobreva
,
Nathan Edwards
,
Peter E. Goble
,
Tyson E. Ochsner
,
Steven M. Quiring
,
Michael Robotham
,
Marina Skumanich
,
Mark Svoboda
,
W. Alex White
, and
Molly Woloszyn

Abstract

Soil moisture is a critical land surface variable, impacting the water, energy, and carbon cycles. While in situ soil moisture monitoring networks are still developing, there is no cohesive strategy or framework to coordinate, integrate, or disseminate these diverse data sources in a synergistic way that can improve our ability to understand climate variability at the national, state, and local levels. Thus, a national strategy is needed to guide network deployment, sustainable network operation, data integration and dissemination, and user-focused product development. The National Coordinated Soil Moisture Monitoring Network (NCSMMN) is a federally led, multi-institution effort that aims to address these needs by capitalizing on existing wide-ranging soil moisture monitoring activities, increasing the utility of observational data, and supporting their strategic application to the full range of decision-making needs. The goals of the NCSMMN are to 1) establish a national “network of networks” that effectively demonstrates data integration and operational coordination of diverse in situ networks; 2) build a community of practice around soil moisture measurement, interpretation, and application—a “network of people” that links data providers, researchers, and the public; and 3) support research and development (R&D) on techniques to merge in situ soil moisture data with remotely sensed and modeled hydrologic data to create user-friendly soil moisture maps and associated tools. The overarching mission of the NCSMMN is to provide coordinated high-quality, nationwide soil moisture information for the public good by supporting applications like drought and flood monitoring, water resource management, agricultural and forestry planning, and fire danger ratings.

Free access
J. K. Andersen
,
Liss M. Andreassen
,
Emily H. Baker
,
Thomas J. Ballinger
,
Logan T. Berner
,
Germar H. Bernhard
,
Uma S. Bhatt
,
Jarle W. Bjerke
,
Jason E. Box
,
L. Britt
,
R. Brown
,
David Burgess
,
John Cappelen
,
Hanne H. Christiansen
,
B. Decharme
,
C. Derksen
,
D. S. Drozdov
,
Howard E. Epstein
,
L. M. Farquharson
,
Sinead L. Farrell
,
Robert S. Fausto
,
Xavier Fettweis
,
Vitali E. Fioletov
,
Bruce C. Forbes
,
Gerald V. Frost
,
Sebastian Gerland
,
Scott J. Goetz
,
Jens-Uwe Grooß
,
Edward Hanna
,
Inger Hanssen-Bauer
,
Stefan Hendricks
,
Iolanda Ialongo
,
K. Isaksen
,
Bjørn Johnsen
,
L. Kaleschke
,
A. L. Kholodov
,
Seong-Joong Kim
,
Jack Kohler
,
Zachary Labe
,
Carol Ladd
,
Kaisa Lakkala
,
Mark J. Lara
,
Bryant Loomis
,
Bartłomiej Luks
,
K. Luojus
,
Matthew J. Macander
,
G. V. Malkova
,
Kenneth D. Mankoff
,
Gloria L. Manney
,
J. M. Marsh
,
Walt Meier
,
Twila A. Moon
,
Thomas Mote
,
L. Mudryk
,
F. J. Mueter
,
Rolf Müller
,
K. E. Nyland
,
Shad O’Neel
,
James E. Overland
,
Don Perovich
,
Gareth K. Phoenix
,
Martha K. Raynolds
,
C. H. Reijmer
,
Robert Ricker
,
Vladimir E. Romanovsky
,
E. A. G. Schuur
,
Martin Sharp
,
Nikolai I. Shiklomanov
,
C. J. P. P. Smeets
,
Sharon L. Smith
,
Dimitri A. Streletskiy
,
Marco Tedesco
,
Richard L. Thoman
,
J. T. Thorson
,
X. Tian-Kunze
,
Mary-Louise Timmermans
,
Hans Tømmervik
,
Mark Tschudi
,
Dirk van As
,
R. S. W. van de Wal
,
Donald A. Walker
,
John E. Walsh
,
Muyin Wang
,
Melinda Webster
,
Øyvind Winton
,
Gabriel J. Wolken
,
K. Wood
,
Bert Wouters
, and
S. Zador
Free access
Richard L. Thoman
,
Matthew L. Druckenmiller
,
Twila A. Moon
,
L. M. Andreassen
,
E. Baker
,
Thomas J. Ballinger
,
Logan T. Berner
,
Germar H. Bernhard
,
Uma S. Bhatt
,
Jarle W. Bjerke
,
L.N. Boisvert
,
Jason E. Box
,
B. Brettschneider
,
D. Burgess
,
Amy H. Butler
,
John Cappelen
,
Hanne H. Christiansen
,
B. Decharme
,
C. Derksen
,
Dmitry Divine
,
D. S. Drozdov
,
Chereque A. Elias
,
Howard E. Epstein
,
Sinead L. Farrell
,
Robert S. Fausto
,
Xavier Fettweis
,
Vitali E. Fioletov
,
Bruce C. Forbes
,
Gerald V. Frost
,
Sebastian Gerland
,
Scott J. Goetz
,
Jens-Uwe Grooß
,
Christian Haas
,
Edward Hanna
,
-Bauer Inger Hanssen
,
M. M. P. D. Heijmans
,
Stefan Hendricks
,
Iolanda Ialongo
,
K. Isaksen
,
C. D. Jensen
,
Bjørn Johnsen
,
L. Kaleschke
,
A. L. Kholodov
,
Seong-Joong Kim
,
J. Kohler
,
Niels J. Korsgaard
,
Zachary Labe
,
Kaisa Lakkala
,
Mark J. Lara
,
Simon H. Lee
,
Bryant Loomis
,
B. Luks
,
K. Luojus
,
Matthew J. Macander
,
R. Í Magnússon
,
G. V. Malkova
,
Kenneth D. Mankoff
,
Gloria L. Manney
,
Walter N. Meier
,
Thomas Mote
,
Lawrence Mudryk
,
Rolf Müller
,
K. E. Nyland
,
James E. Overland
,
F. Pálsson
,
T. Park
,
C. L. Parker
,
Don Perovich
,
Alek Petty
,
Gareth K. Phoenix
,
J. E. Pinzon
,
Robert Ricker
,
Vladimir E. Romanovsky
,
S. P. Serbin
,
G. Sheffield
,
Nikolai I. Shiklomanov
,
Sharon L. Smith
,
K. M. Stafford
,
A. Steer
,
Dimitri A. Streletskiy
,
Tove Svendby
,
Marco Tedesco
,
L. Thomson
,
T. Thorsteinsson
,
X. Tian-Kunze
,
Mary-Louise Timmermans
,
Hans Tømmervik
,
Mark Tschudi
,
C. J. Tucker
,
Donald A. Walker
,
John E. Walsh
,
Muyin Wang
,
Melinda Webster
,
A. Wehrlé
,
Øyvind Winton
,
G. Wolken
,
K. Wood
,
B. Wouters
, and
D. Yang
Free access