Search Results

You are looking at 11 - 20 of 44 items for

  • Author or Editor: Christopher R. Williams x
  • Refine by Access: All Content x
Clear All Modify Search
Christopher R. Williams
,
Warner L. Ecklund
, and
Kenneth S. Gage

Abstract

An algorithm has been developed that classifies precipitating clouds into either stratiform, mixed stratiform/convective, deep convective, or shallow convective clouds by analyzing the vertical structure of reflectivity, velocity, and spectral width derived from measurements made with the vertical beam of a 915-MHz Doppler wind profiler. The precipitating clouds classified as stratiform and convective clouds match the physical and radar properties deduced by Doppler weather radars in the GATE and EMEX programs. The mixed stratiform/convective cloud category is a hybrid regime containing a melting-layer signature associated with stratiform clouds yet is turbulent above the melting level similar to convective clouds. Shallow convective clouds have hydrometeors confined entirely below the melting level implying that warm rain processes are occurring exclusively. The algorithm is illustrated by classifying precipitating clouds from 10 months of observations at Manus Island (2°S, 147°E) in the western Pacific. The sensitivity of the algorithm to threshold criteria is investigated using the Manus Island data.

Full access
Christopher R. Williams
,
Kenneth S. Gage
,
Wallace Clark
, and
Paul Kucera

Abstract

This paper describes a method of absolutely calibrating and routinely monitoring the reflectivity calibration from a scanning weather radar using a vertically profiling radar that has been absolutely calibrated using a collocated surface disdrometer. The three instruments have different temporal and spatial resolutions, and the concept of upscaling is used to relate the small resolution volume disdrometer observations with the large resolution volume scanning radar observations. This study uses observations collected from a surface disdrometer, two profiling radars, and the National Weather Service (NWS) Weather Surveillance Radar-1988 Doppler (WSR-88D) scanning weather radar during the Texas–Florida Underflight-phase B (TEFLUN-B) ground validation field campaign held in central Florida during August and September 1998.

The statistics from the 2062 matched profiling and scanning radar observations during this 2-month period indicate that the WSR-88D radar had a reflectivity 0.7 dBZ higher than the disdrometer-calibrated profiler, the standard deviation was 2.4 dBZ, and the 95% confidence interval was 0.1 dBZ. This study implies that although there is large variability between individual matched observations, the precision of a series of observations is good, allowing meaningful comparisons useful for calibration and monitoring.

Full access
Olivier P. Prat
,
Ana P. Barros
, and
Christopher R. Williams

Abstract

A model of rain shaft microphysics that solves the stochastic advection–coalescence–breakup equation in an atmospheric column was used to simulate the evolution of a stratiform rainfall event during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) in Darwin, Australia. For the first time, a dynamic simulation of the evolution of the drop spectra within a one-dimensional rain shaft is performed using realistic boundary conditions retrieved from real rain events. Droplet size distribution (DSD) retrieved from vertically pointing radar (VPR) measurements are sequentially imposed at the top of the rain shaft as boundary conditions to emulate a realistic rain event. Time series of model profiles of integral parameters such as reflectivity, rain rate, and liquid water content were subsequently compared with estimates retrieved from vertically pointing radars and Joss–Waldvogel disdrometer (JWD) observations. Results obtained are within the VPR retrieval uncertainty estimates. Besides evaluating the model’s ability to capture the dynamical evolution of the DSD within the rain shaft, a case study was conducted to assess the potential use of the model as a physically based interpolator to improve radar retrieval at low levels in the atmosphere. Numerical results showed that relative improvements on the order of 90% in the estimation of rain rate and liquid water content can be achieved close to the ground where the VPR estimates are less reliable. These findings raise important questions with regard to the importance of bin resolution and the lack of sensitivity for small raindrop size (<0.03 cm) in the interpretation of JWD data, and the implications of using disdrometer data to calibrate radar algorithms.

Full access
C. W. Fairall
,
Sergey Y. Matrosov
,
Christopher R. Williams
, and
E. J. Walsh

ABSTRACT

The NOAA W-band radar was deployed on a P-3 aircraft during a study of storm fronts off the U.S. West Coast in 2015 in the second CalWater (CalWater-2) field program. This paper presents an analysis of measured equivalent radar reflectivity factor Z em profiles to estimate the path-averaged precipitation rate and profiles of precipitation microphysics. Several approaches are explored using information derived from attenuation of Z em as a result of absorption and scattering by raindrops. The first approach uses the observed decrease of Z em with range below the aircraft to estimate column mean precipitation rates. A hybrid approach that combines Z em in light rain and attenuation in stronger rain performed best. The second approach estimates path-integrated attenuation (PIA) via the difference in measured and calculated normalized radar cross sections (NRCS m and NRCS c , respectively) retrieved from the ocean surface. The retrieved rain rates are compared to estimates from two other systems on the P-3: a Stepped Frequency Microwave Radiometer (SFMR) and a Wide-Swath Radar Altimeter (WSRA). The W-band radar gives reasonable values for rain rates in the range 0–10 mm h−1 with an uncertainty on the order of 1 mm h−1. Mean profiles of Z em, raindrop Doppler velocity, attenuation, and precipitation rate in bins of rain rate are also computed. A method for correcting measured profiles of Z em for attenuation to estimate profiles of nonattenuated profiles of Z e is examined. Good results are obtained by referencing the surface boundary condition to the NRCS values of PIA. Limitations of the methods are discussed.

Open access
Kenneth S. Gage
,
Christopher R. Williams
,
Warner L. Ecklund
, and
Paul E. Johnston

Abstract

A 2835-MHz (10.6-cm wavelength) profiler and a 920-MHz (32.6-cm wavelength) profiler were collocated by the NOAA Aeronomy Laboratory at Garden Point, Australia, in the Tiwi Islands during the Maritime Continent Thunderstorm Experiment (MCTEX) field campaign in November and December 1995. The two profilers were directed vertically and observed vertical velocities in the clear atmosphere and hydrometeor fall velocities in deep precipitating cloud systems. In the absence of Rayleigh scatterers, the profilers obtain backscattering from the refractive index irregularities created from atmospheric turbulence acting upon refractive index gradients. This kind of scattering is commonly referred to as Bragg scattering and is only weakly dependent on the radar wavelength provided the radar half-wavelength lies within the inertial subrange of homogeneous, isotropic turbulence. In the presence of hydrometeors the profilers observe Rayleigh backscattering from hydrometeors much as weather radars do and this backscatter is very dependent upon radar wavelength, strongly favoring the shorter wavelength profiler resulting in a 20-dB enhancement of the ability of the 2835-MHz profiler to observe hydrometeors. This paper presents observations of equivalent reflectivity, Doppler velocity, and spectral width made by the collocated profilers during MCTEX. Differential reflectivity is used to diagnose the type of echo observed by the profilers in the spectral moment data. When precipitation or other particulate backscatter is dominant, the equivalent reflectivities are essentially the same for both profilers. When Bragg scattering is the dominant process, equivalent reflectivity observed by the 1-GHz profiler exceeds the equivalent reflectivity observed by the 3-GHz profiler by approximately 18 dBZe. However, when the 3-GHz profiler half-wavelength is smaller than the inner scale of turbulence, the equivalent reflectivity difference exceeds 18 dBZe, and when both Rayleigh scattering and Bragg scattering are observed simultaneously, the equivalent reflectivity difference is less than 18 dBZe. The results obtained confirm the capability of two collocated profilers to unambiguously identify the type of echo being observed and hence enable the segregation of “clear air” and precipitation echoes for studies of atmospheric dynamics and precipitating cloud systems.

Full access
Vickal V. Kumar
,
Christian Jakob
,
Alain Protat
,
Christopher R. Williams
, and
Peter T. May

Abstract

Cumulus parameterizations in weather and climate models frequently apply mass-flux schemes in their description of tropical convection. Mass flux constitutes the product of the fractional area covered by convection in a model grid box and the vertical velocity in cumulus clouds. However, vertical velocities are difficult to observe on GCM scales, making the evaluation of mass-flux schemes difficult. Here, the authors combine high-temporal-resolution observations of in-cloud vertical velocities derived from a pair of wind profilers over two wet seasons at Darwin with physical properties of precipitating clouds [cloud-top heights (CTH), convective–stratiform classification] derived from the Darwin C-band polarimetric radar to provide estimates of cumulus mass flux and its constituents. The length of this dataset allows for investigations of the contributions from different cumulus cloud types—namely, congestus, deep, and overshooting convection—to the overall mass flux and of the influence of large-scale conditions on mass flux. The authors found that mass flux was dominated by updrafts and, in particular, the updraft area fraction, with updraft vertical velocity playing a secondary role. The updraft vertical velocities peaked above 10 km where both the updraft area fractions and air densities were small, resulting in a marginal effect on mass-flux values. Downdraft area fractions are much smaller and velocities are much weaker than those in updrafts. The area fraction responded strongly to changes in midlevel large-scale vertical motion and convective inhibition (CIN). In contrast, changes in the lower-tropospheric relative humidity and convective available potential energy (CAPE) strongly modulate in-cloud vertical velocities but have moderate impacts on area fractions. Although average mass flux is found to increase with increasing CTH, it is the environmental conditions that seem to dictate the magnitude of mass flux produced by convection through a combination of effects on area fraction and velocity.

Full access
Christopher R. Williams
,
Allen B. White
,
Kenneth S. Gage
, and
F. Martin Ralph

Abstract

In support of the 2004 North American Monsoon Experiment (NAME) field campaign, NOAA established and maintained a field site about 100 km north of Mazatlán, Mexico, consisting of wind profilers, precipitation profilers, surface upward–downward-looking radiometers, and a 10-m meteorological tower to observe the environment within the North American monsoon. Three objectives of this NOAA project are discussed in this paper: 1) to observe the vertical structure of precipitating cloud systems as they passed over the NOAA profiler site, 2) to estimate the vertical air motion and the raindrop size distribution from near the surface to just below the melting layer, and 3) to better understand the microphysical processes associated with stratiform rain containing well-defined radar bright bands.

To provide a climatological context for the profiler observations at the field site, the profiler reflectivity distributions were compared with Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) reflectivity distributions from the 2004 season over the NAME domain as well as from the 1998–2005 seasons. This analysis places the NAME 2004 observations into the context of other monsoon seasons. It also provides a basis for evaluating the representativeness of the structure of the precipitation systems sampled at this location. The number of rain events observed by the TRMM PR is dependent on geography; the land region, which includes portions of the Sierra Madre Occidental, has more events than the coast and gulf regions. Conversely, from this study it is found that the frequencies of occurrence of stratiform rain and reflectivity profiles with radar bright bands are mostly independent of region. The analysis also revealed that the reflectivity distribution at each height has more year-to-year variability than region-to-region variability. These findings suggest that in cases with a well-defined bright band, the vertical profile of the reflectivity relative to the height of the bright band is similar over the gulf, coast, and land regions.

Full access
Christopher R. Williams
,
Warner L. Ecklund
,
Paul E. Johnston
, and
Kenneth S. Gage

Abstract

Profilers operating in the UHF range are sensitive to both Bragg scattering from radio refractive index structure and to Rayleigh scattering from small point targets. Identification of the scattering process is critical for proper interpretation of these observations, especially the data collected from the vertical incident beam. This study evaluates the performance of Doppler velocity thresholds as a means to separate air motions from hydrometeor motions in vertical incident profiler observations. This evaluation consists of three different steps. First, using two collocated profilers operating at different frequencies, the observations are unambiguously identified as Bragg or Rayleigh scattering processes. Second, the observations are separated into either air or hydrometeor motion using only the data from one profiler. The third step quantitatively evaluates the performance of the single profiler separation techniques by counting the number of correct classifications and adjusting the count by the number of incorrect classifications.

Constant Doppler velocity threshold methods are acceptable methods to separate air motions from hydrometeor motions only after the correct threshold is determined. This study presents a cluster analysis method that robustly and objectively separates air from hydrometeor motions. The introduced cluster analysis produces two thresholds. The first threshold is a Doppler velocity threshold that is a function of reflectivity. The second threshold is the maximum reflectivity in which the Doppler velocity threshold divides the observations into two statistical distributions using the Kolmogorov–Smirnov statistical test. The cluster analysis method quantitatively performs better than constant Doppler velocity threshold methods, and is a repeatable, self-adapting, statistically based procedure.

Full access
Kenneth S. Gage
,
Christopher R. Williams
,
Wallace L. Clark
,
Paul E. Johnston
, and
David A. Carter

Abstract

Doppler radar profilers are widely used for routine measurement of wind, especially in the lower troposphere. The same profilers with minor modifications are useful tools for precipitation research. Specifically, the profilers are now increasingly being used to explore the structure of precipitating cloud systems and to provide calibration and validation of other instruments used in precipitation research, including scanning radars and active and passive satellite-borne sensors. A vertically directed profiler is capable of resolving the vertical structure of precipitating cloud systems that pass overhead. Standard profiler measurements include reflectivity, reflectivity-weighted Doppler velocity, and spectral width. This paper presents profiler observations of precipitating cloud systems observed during Tropical Rainfall Measuring Mission (TRMM) Ground Validation field campaigns. The observations show similarities and differences between convective systems observed in Florida; Brazil; and Kwajalein, Republic of the Marshall Islands. In addition, it is shown how a profiler can be calibrated using a collocated Joss–Waldvogel disdrometer, how the profiler can then be used to calibrate a scanning radar, and how the profiler may be used to retrieve drop size distributions.

Full access
Robert A. Houze Jr
,
Stacy Brodzik
,
Courtney Schumacher
,
Sandra E. Yuter
, and
Christopher R. Williams

Abstract

The Kwajalein, Marshall Islands, Tropical Rainfall Measuring Mission (TRMM) ground validation radar has provided a multiyear three-dimensional radar dataset at an oceanic site. Extensive rain gauge networks are not feasible over the ocean and, hence, are not available to aid in calibrating the radar or determining a conversion from reflectivity to rain rate. This paper describes methods used to ensure the calibration and allow the computation of quantitative rain maps from the radar data without the aid of rain gauges. Calibration adjustments are made by comparison with the TRMM satelliteborne precipitation radar. The additional steps required to convert the calibrated reflectivity to rain maps are the following: correction for the vertical profile of reflectivity below the lowest elevation angle using climatological convective and stratiform reflectivity profiles; conversion of reflectivity (Z) to rain rate (R) with a relationship based on disdrometer data collected at Kwajalein, and a gap-filling estimate. The time series of rain maps computed by these procedures include low, best, and high estimates to frame the estimated overall uncertainty in the radar rain estimation. The greatest uncertainty of the rain maps lies in the calibration of the radar (±30%). The estimation of the low-altitude vertical profile of reflectivity is also a major uncertainty (±15%). The ZR and data-gap uncertainties are relatively minor (±5% or less). These uncertainties help to prioritize the issues that need to be addressed to improve quantitative rainfall mapping over the ocean and provide useful bounds when comparing radar-derived rain estimates with other remotely sensed measures of oceanic rain (such as from satellite passive microwave sensors).

Full access