Search Results

You are looking at 11 - 20 of 102 items for

  • Author or Editor: Clara Deser x
  • Refine by Access: All Content x
Clear All Modify Search
Angeline G. Pendergrass
and
Clara Deser

Abstract

Precipitation is often quantified by the amount that falls over a given period of time but not the rate at which most of it falls or the rate associated with the most frequent events. Here, three metrics are introduced to distill salient characteristics of typical daily precipitation accumulation based on the full distribution of rainfall: rain amount peak (the rain rate at which the most rain falls), rain frequency peak (the most frequent nonzero rain rate), and rain amount width (a measure of the variability of typical precipitation accumulation). These metrics are applied to two observational datasets to describe the climatology of typical daily precipitation accumulation: GPCP 1° daily (October 1996–October 2015) and TMPA 3B42 (January 1998–October 2015). Results show that the rain frequency peak is similar to total rainfall in terms of geographical pattern and seasonal cycle and varies inversely with rain amount width. In contrast, the rain amount peak varies distinctly, reaching maxima on the outer edges of the regions of high total precipitation, and with less seasonal variation. Despite that GPCP and TMPA 3B42 are both merged satellite–gauge precipitation products, they show substantial differences. In particular, the rain amount peak and rain amount width are uniformly greater in TMPA 3B42 compared to GPCP, and there are large discrepancies in their rain frequency distributions (peak and width). Issues relating to model evaluation are highlighted using CESM1 as an illustrative example and underscore the need for observational datasets incorporating measurements of light rain.

Full access
Karen A. McKinnon
and
Clara Deser

Abstract

Recent observed climate trends result from a combination of external radiative forcing and internally generated variability. To better contextualize these trends and forecast future ones, it is necessary to properly model the spatiotemporal properties of the internal variability. Here, a statistical model is developed for terrestrial temperature and precipitation, and global sea level pressure, based upon monthly gridded observational datasets that span 1921–2014. The model is used to generate a synthetic ensemble, each member of which has a unique sequence of internal variability but with statistical properties similar to the observational record. This synthetic ensemble is combined with estimates of the externally forced response from climate models to produce an observational large ensemble (OBS-LE). The 1000 members of the OBS-LE display considerable diversity in their 50-yr regional climate trends, indicative of the importance of internal variability on multidecadal time scales. For example, unforced atmospheric circulation trends associated with the northern annular mode can induce winter temperature trends over Eurasia that are comparable in magnitude to the forced trend over the past 50 years. Similarly, the contribution of internal variability to winter precipitation trends is large across most of the globe, leading to substantial regional uncertainties in the amplitude and, in some cases, the sign of the 50-yr trend. The OBS-LE provides a real-world counterpart to initial-condition model ensembles. The approach could be expanded to using paleo-proxy data to simulate longer-term variability.

Full access
Lantao Sun
,
Michael Alexander
, and
Clara Deser

Abstract

The role of transient Arctic sea ice loss in the projected greenhouse gas–induced late-twentieth- to late-twenty-first-century climate change is investigated using the Geophysical Fluid Dynamics Laboratory’s Coupled Model version 3. Two sets of simulations have been conducted, one with representative concentration pathway (RCP) 8.5 radiative forcing and the second with RCP forcing but with Arctic sea ice nudged to its 1990 state. The difference between the two five-member sets indicates the influence of decreasing Arctic sea ice on the climate system. Within the Arctic, sea ice loss is found to be a primary driver of the surface temperature and precipitation changes. Arctic sea ice depletion also plays a dominant role in projected Atlantic meridional overturning circulation weakening and changes in North Atlantic extratropical sea surface temperature and salinity, especially in the first half century. The effect of present-day Arctic sea ice loss on Northern Hemisphere (NH) extratropical atmospheric circulation is small relative to internal variability and the future sea ice loss effect on atmospheric circulation is distinct from the projected anthropogenic change. Arctic sea ice loss warms NH extratropical continents and is an important contributor to global warming not only over high latitudes but also in the eastern United States. Last, the Arctic sea ice loss displaces the Pacific intertropical convergence zone (ITCZ) equatorward and induces a “mini-global warming” in the tropical upper troposphere.

Full access
Clara Deser
and
John M. Wallace

Abstract

Ship observations of sea surface temperature (SST), sea level pressure and surface wind, and satellite measurements of outgoing longwave radiation (OLR) (an indicator of deep tropical convection) are used to describe the large-scale atmospheric circulation over the tropical Pacific during composite warm and cold episodes. Results are based on linear regression analysis between the circulation parameters and an index of SST in the tropical Pacific during the period 1946–85 (1974–89 for OLR). Warm episodes along the Peru coast (i.e., El Niño events) and basin-wide warmings associated with the Southern Oscillation are examined separately. Charts of the total as well as anomalous fields of SST, sea level pressure, surface wind and OLR for both warm and cold episodes are presented.

SST and surface wind anomalies associated with warm episodes are consistent with the results of Rasmusson and Carpenter (1982). El Niño events are characterized by strong positive SST anomalies along the coasts of Ecuador and Peru and along the equator eastward of 130°W, and by an equatorward expansion and intensification of the Inter Tropical Convergence Zone (ITCZ) over the eastern Pacific. Basin-wide warm episodes exhibit positive SST anomalies along the equator eastward of 170°E, a southward expansion and intensification of the ITCZ, and an eastward shift and strengthening of the Indonesian convective zone. The movements of the precipitation zones are in good agreement with anomalous large scale surface wind convergence, Meridional wind anomalies dominate the anomalous surface convergence throughout the tropical Pacific.

Surface winds are consistent with the sea level pressure distribution, with down-gradient flow near the equator, and with Ekman balance in the subtropics. A center of below normal sea level pressure over the equatorial eastern Pacific, distinct from the negative pressure anomalies over the subtropical southeast Pacific, is observed during basin-wide warm episodes. This equatorial feature is highly correlated with local SST and appears to be a boundary layer phenomenon.

There is a net increase in deep convection over the tropical Pacific during warm episodes. Enhanced convection in the ITCZ during warm years is not accompanied by a net increase in surface wind convergence. A comparison between precipitation and surface wind convergence suggests that moisture convergence extends through a deeper layer in the equatorial western Pacific than in the ITCZ over the eastern Pacific.

The contrasting distributions of surface relative humidity, total cloudiness and air-sea temperature difference over the eastern tropical Pacific during basin-wide warm and cold episodes are described in the context of boundary layer processes.

Full access
Amy Clement
,
Pedro DiNezio
, and
Clara Deser

Abstract

The Southern Oscillation (SO) is usually described as the atmospheric component of the dynamically coupled El Niño–Southern Oscillation phenomenon. The contention in this work, however, is that dynamical coupling is not required to produce the SO. Simulations with atmospheric general circulation models that have varying degrees of coupling to the ocean are used to show that the SO emerges as a dominant mode of variability if the atmosphere and ocean are coupled only through heat and moisture fluxes. Herein this mode of variability is called the thermally coupled Walker (TCW) mode. It is a robust feature of simulations with atmospheric general circulation models (GCMs) coupled to simple ocean mixed layers. Despite the absence of interactive ocean dynamics in these simulations, the spatial patterns of sea level pressure, surface temperature, and precipitation variability associated with the TCW are remarkably realistic. This mode has a red spectrum indicating persistence on interannual to decadal time scales that appears to arise through an off-equatorial trade wind–evaporation–surface temperature feedback and cloud shortwave radiative effects in the central Pacific. When dynamically coupled to the ocean (in fully coupled ocean–atmosphere GCMs), the main change to this mode is increased interannual variability in the eastern equatorial Pacific sea surface temperature and teleconnections in the North Pacific and equatorial Atlantic, though not all coupled GCMs simulate this effect.

Despite the oversimplification due to the lack of interactive ocean dynamics, the physical mechanisms leading to the TCW should be active in the actual climate system. Moreover, the robustness and realism of the spatial patterns of this mode suggest that the physics of the TCW can explain some of the primary features of observed interannual and decadal variability in the Pacific and the associated global teleconnections.

Full access
Yuko M. Okumura
and
Clara Deser

Abstract

El Niño and La Niña are not a simple mirror image, but exhibit significant differences in their spatial structure and seasonal evolution. In particular, sea surface temperature (SST) anomalies over the equatorial Pacific cold tongue are larger in magnitude during El Niño compared to La Niña, resulting in positive skewness of interannual SST variations. The associated atmospheric deep convection anomalies are displaced eastward during El Niño compared to La Niña because of the nonlinear atmospheric response to SST. In addition to these well-known features, an analysis of observational data for the past century shows that there is a robust asymmetry in the duration of El Niño and La Niña. Most El Niños and La Niñas develop in late boreal spring/summer, when the climatological cold tongue is intensifying, and they peak near the end of the calendar year. After the mature phase, El Niños tend to decay rapidly by next summer, but many La Niñas persist through the following year and often reintensify in the subsequent winter. Throughout the analysis period, this asymmetric feature is evident for strong events in which Niño-3.4 SST anomalies exceed one standard deviation in December. Seasonally stratified composite analysis suggests that the eastward displacement of atmospheric deep convection anomalies during El Niño enables surface winds in the western equatorial Pacific to be more affected by remote forcing from the Indian Ocean, which acts to terminate the Pacific events.

Full access
Justin J. Wettstein
and
Clara Deser

Abstract

Internal variability in twenty-first-century summer Arctic sea ice loss and its relationship to the large-scale atmospheric circulation is investigated in a 39-member Community Climate System Model, version 3 (CCSM3) ensemble for the period 2000–61. Each member is subject to an identical greenhouse gas emissions scenario and differs only in the atmospheric model component's initial condition.

September Arctic sea ice extent trends during 2020–59 range from −2.0 × 106 to −5.7 × 106 km2 across the 39 ensemble members, indicating a substantial role for internal variability in future Arctic sea ice loss projections. A similar nearly threefold range (from −7.0 × 103 to −19 × 103 km3) is found for summer sea ice volume trends.

Higher rates of summer Arctic sea ice loss in CCSM3 are associated with enhanced transpolar drift and Fram Strait ice export driven by surface wind and sea level pressure patterns. Over the Arctic, the covarying atmospheric circulation patterns resemble the so-called Arctic dipole, with maximum amplitude between April and July. Outside the Arctic, an atmospheric Rossby wave train over the Pacific sector is associated with internal ice loss variability. Interannual covariability patterns between sea ice and atmospheric circulation are similar to those based on trends, suggesting that similar processes govern internal variability over a broad range of time scales. Interannual patterns of CCSM3 ice–atmosphere covariability compare well with those in nature and in the newer CCSM4 version of the model, lending confidence to the results. Atmospheric teleconnection patterns in CCSM3 suggest that the tropical Pacific modulates Arctic sea ice variability via the aforementioned Rossby wave train. Large ensembles with other coupled models are needed to corroborate these CCSM3-based findings.

Full access
Pedro N. DiNezio
and
Clara Deser

Abstract

A large fraction (35%–50%) of observed La Niña events last two years or longer, in contrast to the great majority of El Niño events, which last one year. Here, the authors explore the nonlinear processes responsible for the multiyear persistence of La Niña in the Community Climate System Model, version 4 (CCSM4), a coupled climate model that simulates the asymmetric duration of La Niña and El Niño events realistically. The authors develop a nonlinear delayed-oscillator (NDO) model of the El Niño–Southern Oscillation (ENSO) to explore the mechanisms governing the duration of La Niña. The NDO includes nonlinear and seasonally dependent feedbacks derived from the CCSM4 heat budget, which allow it to simulate key ENSO features in quantitative agreement with CCSM4.

Sensitivity experiments with the NDO show that the nonlinearity in the delayed thermocline feedback is the sole process controlling the duration of La Niña events. The authors’ results show that, as La Niña events become stronger, the delayed thermocline response does not increase proportionally. This nonlinearity arises from two processes: 1) the response of winds to sea surface temperature anomalies and 2) the ability of thermocline depth anomalies to influence temperatures at the base of the mixed layer. Thus, strong La Niña events require that the thermocline remains deeper for longer than 1 yr for sea surface temperatures to return to neutral. Ocean reanalysis data show evidence for this thermocline nonlinearity, suggesting that this process could be at work in nature.

Full access
Clara Deser
and
Catherine A. Smith

Abstract

The climatological large-scale patterns of diurnal and semidiurnal near-surface wind variations over the tropical Pacific Ocean are documented using 3 yr of hourly measurements from the Tropical Atmosphere–Ocean moored buoy array. Semidiurnal variations account for 68% of the mean daily variance of the zonal wind component, while diurnal variations account for 82% of the mean daily variance of the meridional wind component. The spatially uniform amplitude (0.15 m s−1) and phase (0300 LT) of the semidiurnal zonal wind variations are shown to be consistent with atmospheric thermal tidal theory.

The diurnal meridional wind variations on either side of the equator are approximately out of phase. This pattern results in a diurnal variation of wind divergence along the equator, with maximum divergence in the early morning (∼0800 LT). The average amplitude of the diurnal cycle in zonal mean divergence is 0.45 × 10−6 s−1, which corresponds to a day–night change of 45% relative to the daily mean. The relative day–night changes in near-surface equatorial wind divergence are larger in the western Pacific (78%) than in the eastern Pacific (31%) due mainly to differences in the daily mean divergence. The diurnal amplitude of equatorial wind divergence changes seasonally and interannually in proportion to the strength of the mean divergence.

It is suggested that diurnal heating of the sea surface may contribute to the zonally symmetric diurnal cycle of equatorial wind divergence.

Full access
Gudrun Magnusdottir
,
Clara Deser
, and
R. Saravanan

Abstract

Observed multidecadal trends in extratropical atmospheric flow, such as the positive trend in the North Atlantic Oscillation (NAO) index, may be attributable to a number of causes. This study addresses the question of whether the atmospheric trends may be caused by observed trends in oceanic boundary forcing. Experiments were carried out using the NCAR atmospheric general circulation model with specified sea surface temperature (SST) and sea ice anomalies confined to the North Atlantic sector. The spatial pattern of the anomalous forcing was chosen to be realistic in that it corresponds to the recent 40-yr trend in SST and sea ice, but the anomaly amplitude was exaggerated in order to make the response statistically more robust. The wintertime response to both types of forcing resembles the NAO to first order. Even for an exaggerated amplitude, the atmospheric response to the SST anomaly is quite weak compared to the observed positive trend in the NAO, but has the same sign, indicative of a weak positive feedback. The anomalies in sea ice extent are more efficient than SST anomalies at exciting an atmospheric response comparable in amplitude to the observed NAO trend. However, this atmospheric response has the opposite sign to the observed trend, indicative of a significant negative feedback associated with the sea ice forcing. Additional experiments using SST anomalies with opposite sign to the observed trend indicate that there are significant nonlinearities associated with the atmospheric response.

The transient eddy response to the observed SST trend is consistent with the positive NAO response, with the North Atlantic storm track amplifying downstream and developing a more pronounced meridional tilt. In contrast, the storm track response to the observed sea ice trend corresponds to a weaker, southward-shifted, more zonal storm track, which is consistent with the negative NAO response.

Full access