Search Results

You are looking at 11 - 20 of 40 items for

  • Author or Editor: Craig S. Schwartz x
  • Refine by Access: All Content x
Clear All Modify Search
Craig S. Schwartz
,
Zhiquan Liu
, and
Xiang-Yu Huang

Abstract

Dual-resolution (DR) hybrid variational-ensemble analysis capability was implemented within the community Weather Research and Forecasting (WRF) Model data assimilation (DA) system, which is designed for limited-area applications. The DR hybrid system combines a high-resolution (HR) background, flow-dependent background error covariances (BECs) derived from a low-resolution ensemble, and observations to produce a deterministic HR analysis. As DR systems do not require HR ensembles, they are computationally cheaper than single-resolution (SR) hybrid configurations, where the background and ensemble have equal resolutions.

Single-observation tests were performed to document some characteristics of limited-area DR hybrid analyses. Additionally, the DR hybrid system was evaluated within a continuously cycling framework, where new DR hybrid analyses were produced every 6 h over ~3.5 weeks. In the DR configuration presented here, the deterministic backgrounds and analyses had 15-km horizontal grid spacing, but the 32-member WRF Model–based ensembles providing flow-dependent BECs for the hybrid had 45-km horizontal grid spacing. The DR hybrid analyses initialized 72-h WRF Model forecasts that were compared to forecasts initialized by an SR hybrid system where both the ensemble and background had 15-km horizontal grid spacing. The SR and DR hybrid systems were coupled to an ensemble adjustment Kalman filter that updated ensembles each DA cycle.

On average, forecasts initialized from 15-km DR and SR hybrid analyses were not statistically significantly different, although tropical cyclone track forecast errors favored the SR-initialized forecasts. Although additional studies over longer time periods and at finer grid spacing are needed to further understand sensitivity to ensemble perturbation resolution, these results suggest users should carefully consider whether SR hybrid systems are worth the extra cost.

Full access
Zhiquan Liu
,
Craig S. Schwartz
,
Chris Snyder
, and
So-Young Ha

Abstract

The impact of assimilating radiance observations from the Advanced Microwave Sounding Unit-A (AMSU-A) on forecasts of several tropical cyclones (TCs) was studied using the Weather Research and Forecasting Model (WRF) and a limited-area ensemble Kalman filter (EnKF). Analysis/forecast cycling experiments with and without AMSU-A radiance assimilation were performed over the Atlantic Ocean for the period 11 August–13 September 2008, when five named storms formed. For convenience, the radiance forward operators and bias-correction coefficients, along with the majority of quality-control decisions, were computed by a separate, preexisting variational assimilation system. The bias-correction coefficients were obtained from 3-month offline statistics and fixed during the EnKF analysis cycles. The vertical location of each radiance observation, which is required for covariance localization in the EnKF, was taken to be the level at which the AMSU-A channels’ weighting functions peaked.

Deterministic 72-h WRF forecasts initialized from the ensemble-mean analyses were evaluated with a focus on TC prediction. Assimilating AMSU-A radiances produced better depictions of the environmental fields when compared to reanalyses and dropwindsonde observations. Radiance assimilation also resulted in substantial improvement of TC track and intensity forecasts with track-error reduction up to 16% for forecasts beyond 36 h. Additionally, assimilating both radiances and satellite winds gave markedly more benefit for TC track forecasts than solely assimilating radiances.

Full access
Xiaoshi Qiao
,
Shizhang Wang
,
Craig S. Schwartz
,
Zhiquan Liu
, and
Jinzhong Min

Abstract

A probability matching (PM) product using the ensemble maximum (EnMax) as the basis for spatial reassignment was developed. This PM product was called the PM max and its localized version was called the local PM (LPM) max. Both products were generated from a 10-member ensemble with 3-km horizontal grid spacing and evaluated over 364 36-h forecasts in terms of the fractions skill score. Performances of the PM max and LPM max were compared to those of the traditional PM mean and LPM mean, which both used the ensemble mean (EnMean) as the basis for spatial reassignment. Compared to observations, the PM max typically outperformed the PM mean for precipitation rates ≥5 mm h−1; this improvement was related to the EnMax, which had better spatial placement than the EnMean for heavy precipitation. However, the PM mean produced better forecasts than the PM max for lighter precipitation. It appears that the global reassignment used to produce the PM max was responsible for its poorer performance relative to the PM mean at light precipitation rates, as the LPM max was more skillful than the LPM mean at all thresholds. These results suggest promise for PM products based on the EnMax, especially for rare events and ensembles with insufficient spread.

Free access
Thomas M. Gowan
,
W. James Steenburgh
, and
Craig S. Schwartz

Abstract

Convection-permitting ensembles can capture the large spatial variability and quantify the inherent uncertainty of precipitation in areas of complex terrain; however, such systems remain largely untested over the western United States. In this study, we assess the capabilities of deterministic and probabilistic cool-season quantitative precipitation forecasts (QPFs) produced by the 10-member, convection-permitting (3-km horizontal grid spacing) NCAR Ensemble using observations collected by SNOTEL stations at mountain locations across the western United States and precipitation analyses from PRISM. We also examine the performance of operational forecast systems run by NCEP including the High Resolution Rapid Refresh (HRRR) model, the NAM forecast system with a 3-km continental United States (CONUS) nest, GFS, and the Short-Range Ensemble Forecast system (SREF). Overall, we find that higher-resolution models, such as the HRRR, NAM-3km CONUS nest, and an individual member of the NCAR Ensemble, are more deterministically skillful than coarser models, especially over the narrow interior ranges of the western United States, likely because they better resolve topography and thus better simulate orographic precipitation. The 10-member NCAR Ensemble is also more probabilistically skillful than 13-member subensembles composed of each SREF dynamical core, but less probabilistically skillful than the full 26-member SREF, as a result of insufficient spread. These results should help guide future short-range model development and inform forecasters about the capabilities and limitations of several widely used deterministic and probabilistic modeling systems over the western United States.

Full access
Craig S. Schwartz
,
Zhiquan Liu
,
Yongsheng Chen
, and
Xiang-Yu Huang

Abstract

Two parallel experiments were designed to evaluate whether assimilating microwave radiances with a cyclic, limited-area ensemble adjustment Kalman filter (EAKF) could improve track, intensity, and precipitation forecasts of Typhoon Morakot (2009). The experiments were configured identically, except that one assimilated microwave radiances and the other did not. Both experiments produced EAKF analyses every 6 h between 1800 UTC 3 August and 1200 UTC 9 August 2009, and the mean analyses initialized 72-h Weather Research and Forecasting model forecasts. Examination of individual forecasts and average error statistics revealed that assimilating microwave radiances ultimately resulted in better intensity forecasts compared to when radiances were withheld. However, radiance assimilation did not substantially impact track forecasts, and the impact on precipitation forecasts was mixed. Overall, net positive results suggest that assimilating microwave radiances with a limited-area EAKF system is beneficial for tropical cyclone prediction, but additional studies are needed.

Full access
Glen S. Romine
,
Craig S. Schwartz
,
Chris Snyder
,
Jeff L. Anderson
, and
Morris L. Weisman

Abstract

During the spring 2011 season, a real-time continuously cycled ensemble data assimilation system using the Advanced Research version of the Weather Research and Forecasting Model (WRF) coupled with the Data Assimilation Research Testbed toolkit provided initial and boundary conditions for deterministic convection-permitting forecasts, also using WRF, over the eastern two-thirds of the conterminous United States (CONUS). In this study the authors evaluate the mesoscale assimilation system and the convection-permitting forecasts, at 15- and 3-km grid spacing, respectively. Experiments employing different physics options within the continuously cycled ensemble data assimilation system are shown to lead to differences in the mean mesoscale analysis characteristics. Convection-permitting forecasts with a fixed model configuration are initialized from these physics-varied analyses, as well as control runs from 0.5° Global Forecast System (GFS) analysis. Systematic bias in the analysis background influences the analysis fit to observations, and when this analysis initializes convection-permitting forecasts, the forecast skill is degraded as bias in the analysis background increases. Moreover, differences in mean error characteristics associated with each physical parameterization suite lead to unique errors of spatial, temporal, and intensity aspects of convection-permitting rainfall forecasts. Observation bias by platform type is also shown to impact the analysis quality.

Full access
Glen S. Romine
,
Craig S. Schwartz
,
Ryan D. Torn
, and
Morris L. Weisman

Abstract

Over the central Great Plains, mid- to upper-tropospheric weather disturbances often modulate severe storm development. These disturbances frequently pass over the Intermountain West region of the United States during the early morning hours preceding severe weather events. This region has fewer in situ observations of the atmospheric state compared with most other areas of the United States, contributing toward greater uncertainty in forecast initial conditions. Assimilation of supplemental observations is hypothesized to reduce initial condition uncertainty and improve forecasts of high-impact weather.

During the spring of 2013, the Mesoscale Predictability Experiment (MPEX) leveraged ensemble-based targeting methods to key in on regions where enhanced observations might reduce mesoscale forecast uncertainty. Observations were obtained with dropsondes released from the NSF/NCAR Gulfstream-V aircraft during the early morning hours preceding 15 severe weather events over areas upstream from anticipated convection. Retrospective data-denial experiments are conducted to evaluate the value of dropsonde observations in improving convection-permitting ensemble forecasts. Results show considerable variation in forecast performance from assimilating dropsonde observations, with a modest but statistically significant improvement, akin to prior targeted observation studies that focused on synoptic-scale prediction. The change in forecast skill with dropsonde information was not sensitive to the skill of the control forecast. Events with large positive impact sampled both the disturbance and adjacent flow, akin to results from past synoptic-scale targeting studies, suggesting that sampling both the disturbance and adjacent flow is necessary regardless of the horizontal scale of the feature of interest.

Full access
Craig S. Schwartz
,
Glen S. Romine
,
Kathryn R. Fossell
,
Ryan A. Sobash
, and
Morris L. Weisman

Abstract

Precipitation forecasts from convection-allowing ensembles with 3- and 1-km horizontal grid spacing were evaluated between 15 May and 15 June 2013 over central and eastern portions of the United States. Probabilistic forecasts produced from 10- and 30-member, 3-km ensembles were consistently better than forecasts from individual 1-km ensemble members. However, 10-member, 1-km probabilistic forecasts usually were best, especially over the first 12 h and at rainfall rates ≥ 5.0 mm h−1 at later times. Further object-based investigation revealed that better 1-km forecasts at heavier rainfall rates were associated with more accurate placement of mesoscale convective systems compared to 3-km forecasts. The collective results indicate promise for 1-km ensembles once computational resources can support their operational implementation.

Full access
Craig S. Schwartz
,
Glen S. Romine
,
Kathryn R. Smith
, and
Morris L. Weisman

Abstract

Convection-permitting Weather Research and Forecasting (WRF) Model forecasts with 3-km horizontal grid spacing were produced for a 50-member ensemble over a domain spanning three-quarters of the contiguous United States between 25 May and 25 June 2012. Initial conditions for the 3-km forecasts were provided by a continuously cycling ensemble Kalman filter (EnKF) analysis–forecast system with 15-km horizontal grid length. The 3-km forecasts were evaluated using both probabilistic and deterministic techniques with a focus on hourly precipitation. All 3-km ensemble members overpredicted rainfall and there was insufficient forecast precipitation spread. However, the ensemble demonstrated skill at discriminating between both light and heavy rainfall events, as measured by the area under the relative operating characteristic curve. Subensembles composed of 20–30 members usually demonstrated comparable resolution, reliability, and skill as the full 50-member ensemble. On average, deterministic forecasts initialized from mean EnKF analyses were at least as or more skillful than forecasts initialized from individual ensemble members “closest” to the mean EnKF analyses, and “patched together” forecasts composed of members closest to the ensemble mean during each forecast interval were skillful but came with caveats. The collective results underscore the need to improve convection-permitting ensemble spread and have important implications for optimizing EnKF-initialized forecasts.

Full access
Ryan A. Sobash
,
Craig S. Schwartz
,
Glen S. Romine
,
Kathryn R. Fossell
, and
Morris L. Weisman

Abstract

Probabilistic severe weather forecasts for days 1 and 2 were produced using 30-member convection-allowing ensemble forecasts initialized by an ensemble Kalman filter data assimilation system during a 32-day period coinciding with the Mesoscale Predictability Experiment. The forecasts were generated by smoothing the locations where model output indicated extreme values of updraft helicity, a surrogate for rotating thunderstorms in model output. The day 1 surrogate severe probability forecasts (SSPFs) produced skillful and reliable predictions of severe weather during this period, after an appropriate calibration of the smoothing kernel. The ensemble SSPFs exceeded the skill of SSPFs derived from two benchmark deterministic forecasts, with the largest differences occurring on the mesoscale, while all SSPFs produced similar forecasts on synoptic scales. While the deterministic SSPFs often overforecasted high probabilities, the ensemble improved the reliability of these probabilities, at the expense of producing fewer high-probability values. For the day 2 period, the SSPFs provided competitive guidance compared to the day 1 forecasts, although additional smoothing was needed to produce the same level of skill, reducing the forecast sharpness. Results were similar using 10 ensemble members, suggesting value exists when running a smaller ensemble if computational resources are limited. Finally, the SSPFs were compared to severe weather risk areas identified in Storm Prediction Center (SPC) convective outlooks. The SSPF skill was comparable to the SPC outlook skill in identifying regions where severe weather would occur, although performance varied on a day-to-day basis.

Full access