Search Results

You are looking at 11 - 20 of 31 items for

  • Author or Editor: Doug Smith x
  • Refine by Access: All Content x
Clear All Modify Search
Doug M. Smith, Nick J. Dunstone, Adam A. Scaife, Emma K. Fiedler, Dan Copsey, and Steven C. Hardiman
Full access
Doug M. Smith, Nick J. Dunstone, Adam A. Scaife, Emma K. Fiedler, Dan Copsey, and Steven C. Hardiman

Abstract

The atmospheric response to Arctic and Antarctic sea ice changes typical of the present day and coming decades is investigated using the Hadley Centre global climate model (HadGEM3). The response is diagnosed from ensemble simulations of the period 1979 to 2009 with observed and perturbed sea ice concentrations. The experimental design allows the impacts of ocean–atmosphere coupling and the background atmospheric state to be assessed. The modeled response can be very different to that inferred from statistical relationships, showing that the response cannot be easily diagnosed from observations. Reduced Arctic sea ice drives a local low pressure response in boreal summer and autumn. Increased Antarctic sea ice drives a poleward shift of the Southern Hemisphere midlatitude jet, especially in the cold season. Coupling enables surface temperature responses to spread to the ocean, amplifying the atmospheric response and revealing additional impacts including warming of the North Atlantic in response to reduced Arctic sea ice, with a northward shift of the Atlantic intertropical convergence zone and increased Sahel rainfall. The background state controls the sign of the North Atlantic Oscillation (NAO) response via the refraction of planetary waves. This could help to resolve differences in previous studies, and potentially provides an “emergent constraint” to narrow the uncertainties in the NAO response, highlighting the need for future multimodel coordinated experiments.

Full access
Donald Burgess, Kiel Ortega, Greg Stumpf, Gabe Garfield, Chris Karstens, Tiffany Meyer, Brandon Smith, Doug Speheger, Jim Ladue, Rick Smith, and Tim Marshall

Abstract

The tornado that affected Moore, Oklahoma, and the surrounding area on 20 May 2013 was an extreme event. It traveled 23 km and damage was up to 1.7 km wide. The tornado killed 24 people, injured over 200 others, and damaged many structures. A team of surveyors from the Norman, Oklahoma, National Weather Center and two private companies performed a detailed survey (all objects/structures) of the tornado to provide better documentation than is normally done, in part to aid future studies of the event. The team began surveying tornado damage on the morning of 21 May and continued the survey process for the next several weeks. Extensive ground surveys were performed. The surveys were aided by use of high-resolution aerial and satellite imagery. The survey process utilized the enhanced Fujita (EF) scale and was facilitated by use of a National Weather Service (NWS) software package: the Damage Assessment Toolkit (DAT). The survey team defined a “well built” house that qualified for an EF5 rating. Survey results document 4253 objects damaged by the tornado, 4222 of them EF-scale damage indicators (DIs). Of the total DIs, about 50% were associated with EF0 ratings. Excluding EF0 damage, 38% were associated with EF1, 24% with EF2, 21% with EF3, 17% with EF4, and only 0.4% associated with EF5. For the strongest level of damage (EF5), only nine homes were found. Survey results are similar to other documented tornadoes, but the amount of EF1 damage is greater than in other cases. Also discussed is the use of non-DI objects that are damaged and ways in which to improve future surveys.

Full access
Doug M. Smith, Nick J. Dunstone, Rosie Eade, David Fereday, Leon Hermanson, James M. Murphy, Holger Pohlmann, Niall Robinson, and Adam A. Scaife
Full access
Susanna Corti, Tim Palmer, Magdalena Balmaseda, Antje Weisheimer, Sybren Drijfhout, Nick Dunstone, Wilco Hazeleger, Jürgen Kröger, Holger Pohlmann, Doug Smith, Jin-Song von Storch, and Bert Wouters

Abstract

The impact of initial conditions relative to external forcings in decadal integrations from an ensemble of state-of-the-art prediction models has been assessed using specifically designed sensitivity experiments (SWAP experiments). They consist of two sets of 10-yr-long ensemble hindcasts for two initial dates in 1965 and 1995 using either the external forcings from the “correct” decades or swapping the forcings between the two decades. By comparing the two sets of integrations, the impact of external forcing versus initial conditions on the predictability over multiannual time scales was estimated as the function of lead time of the hindcast. It was found that over time scales longer than about 1 yr, the predictability of sea surface temperatures (SSTs) on a global scale arises mainly from the external forcing. However, the correct initialization has a longer impact on SST predictability over specific regions such as the North Atlantic, the northwestern Pacific, and the Southern Ocean. The impact of initialization is even longer and extends to wider regions when below-surface ocean variables are considered. For the western and eastern tropical Atlantic, the impact of initialization for the 700-m heat content (HTC700) extends to as much as 9 years for some of the models considered. In all models the impact of initial conditions on the predictability of the Atlantic meridional overturning circulation (AMOC) is dominant for the first 5 years.

Full access
Amy Solomon, Lisa Goddard, Arun Kumar, James Carton, Clara Deser, Ichiro Fukumori, Arthur M. Greene, Gabriele Hegerl, Ben Kirtman, Yochanan Kushnir, Matthew Newman, Doug Smith, Dan Vimont, Tom Delworth, Gerald A. Meehl, and Timothy Stockdale

Abstract

Given that over the course of the next 10–30 years the magnitude of natural decadal variations may rival that of anthropogenically forced climate change on regional scales, it is envisioned that initialized decadal predictions will provide important information for climate-related management and adaptation decisions. Such predictions are presently one of the grand challenges for the climate community. This requires identifying those physical phenomena—and their model equivalents—that may provide additional predictability on decadal time scales, including an assessment of the physical processes through which anthropogenic forcing may interact with or project upon natural variability. Such a physical framework is necessary to provide a consistent assessment (and insight into potential improvement) of the decadal prediction experiments planned to be assessed as part of the IPCC's Fifth Assessment Report.

Full access
Jeff R. Knight, Martin B. Andrews, Doug M. Smith, Alberto Arribas, Andrew W. Colman, Nick J. Dunstone, Rosie Eade, Leon Hermanson, Craig MacLachlan, K. Andrew Peterson, Adam A. Scaife, and Andrew Williams

Abstract

Decadal climate predictions are now established as a source of information on future climate alongside longer-term climate projections. This information has the potential to provide key evidence for decisions on climate change adaptation, especially at regional scales. Its importance implies that following the creation of an initial generation of decadal prediction systems, a process of continual development is needed to produce successive versions with better predictive skill. Here, a new version of the Met Office Hadley Centre Decadal Prediction System (DePreSys 2) is introduced, which builds upon the success of the original DePreSys. DePreSys 2 benefits from inclusion of a newer and more realistic climate model, the Hadley Centre Global Environmental Model version 3 (HadGEM3), but shares a very similar approach to initialization with its predecessor. By performing a large suite of reforecasts, it is shown that DePreSys 2 offers improved skill in predicting climate several years ahead. Differences in skill between the two systems are likely due to a multitude of differences between the underlying climate models, but it is demonstrated herein that improved simulation of tropical Pacific variability is a key source of the improved skill in DePreSys 2. While DePreSys 2 is clearly more skilful than DePreSys in a global sense, it is shown that decreases in skill in some high-latitude regions are related to errors in representing long-term trends. Detrending the results focuses on the prediction of decadal time-scale variability, and shows that the improvement in skill in DePreSys 2 is even more marked.

Full access
Gerald A. Meehl, Lisa Goddard, George Boer, Robert Burgman, Grant Branstator, Christophe Cassou, Susanna Corti, Gokhan Danabasoglu, Francisco Doblas-Reyes, Ed Hawkins, Alicia Karspeck, Masahide Kimoto, Arun Kumar, Daniela Matei, Juliette Mignot, Rym Msadek, Antonio Navarra, Holger Pohlmann, Michele Rienecker, Tony Rosati, Edwin Schneider, Doug Smith, Rowan Sutton, Haiyan Teng, Geert Jan van Oldenborgh, Gabriel Vecchi, and Stephen Yeager

This paper provides an update on research in the relatively new and fast-moving field of decadal climate prediction, and addresses the use of decadal climate predictions not only for potential users of such information but also for improving our understanding of processes in the climate system. External forcing influences the predictions throughout, but their contributions to predictive skill become dominant after most of the improved skill from initialization with observations vanishes after about 6–9 years. Recent multimodel results suggest that there is relatively more decadal predictive skill in the North Atlantic, western Pacific, and Indian Oceans than in other regions of the world oceans. Aspects of decadal variability of SSTs, like the mid-1970s shift in the Pacific, the mid-1990s shift in the northern North Atlantic and western Pacific, and the early-2000s hiatus, are better represented in initialized hindcasts compared to uninitialized simulations. There is evidence of higher skill in initialized multimodel ensemble decadal hindcasts than in single model results, with multimodel initialized predictions for near-term climate showing somewhat less global warming than uninitialized simulations. Some decadal hindcasts have shown statistically reliable predictions of surface temperature over various land and ocean regions for lead times of up to 6–9 years, but this needs to be investigated in a wider set of models. As in the early days of El Niño–Southern Oscillation (ENSO) prediction, improvements to models will reduce the need for bias adjustment, and increase the reliability, and thus usefulness, of decadal climate predictions in the future.

Full access
Paolo Ruggieri, Alessio Bellucci, Dario Nicolí, Panos J. Athanasiadis, Silvio Gualdi, Christophe Cassou, Fred Castruccio, Gokhan Danabasoglu, Paolo Davini, Nick Dunstone, Rosemary Eade, Guillaume Gastineau, Ben Harvey, Leon Hermanson, Saïd Qasmi, Yohan Ruprich-Robert, Emilia Sanchez-Gomez, Doug Smith, Simon Wild, and Matteo Zampieri

Abstract

The influence of the Atlantic multidecadal variability (AMV) on the North Atlantic storm track and eddy-driven jet in the winter season is assessed via a coordinated analysis of idealized simulations with state-of-the-art coupled models. Data used are obtained from a multimodel ensemble of AMV± experiments conducted in the framework of the Decadal Climate Prediction Project component C. These experiments are performed by nudging the surface of the Atlantic Ocean to states defined by the superimposition of observed AMV± anomalies onto the model climatology. A robust extratropical response is found in the form of a wave train extending from the Pacific to the Nordic seas. In the warm phase of the AMV compared to the cold phase, the Atlantic storm track is typically contracted and less extended poleward and the low-level jet is shifted toward the equator in the eastern Atlantic. Despite some robust features, the picture of an uncertain and model-dependent response of the Atlantic jet emerges and we demonstrate a link between model bias and the character of the jet response.

Open access
Kevin J. Noone, Doug W. Johnson, Jonathan P. Taylor, Ronald J. Ferek, Tim Garrett, Peter V. Hobbs, Philip A. Durkee, Kurt Nielsen, Elisabeth Öström, Colin O’Dowd, Michael H. Smith, Lynn M. Russell, Richard C. Flagan, John H. Seinfeld, Lieve De Bock, René E. Van Grieken, James G. Hudson, Ian Brooks, Richard F. Gasparovic, and Robert A. Pockalny

Abstract

A case study of the effects of ship emissions on the microphysical, radiative, and chemical properties of polluted marine boundary layer clouds is presented. Two ship tracks are discussed in detail. In situ measurements of cloud drop size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside-cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to remotely sensed measurements of cloud radiative properties.

The authors examine the processes behind ship track formation in a polluted marine boundary layer as an example of the effects of anthropogenic particulate pollution on the albedo of marine stratiform clouds.

Full access