Search Results

You are looking at 11 - 19 of 19 items for :

  • Author or Editor: Elizabeth A. Ritchie x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Kimberly M. Wood
and
Elizabeth A. Ritchie

Abstract

A dataset of 167 eastern North Pacific tropical cyclones (TCs) is investigated for potential impacts in the southwestern United States over the period 1989–2009 and evaluated in the context of a 30-yr climatology. The statistically significant patterns from empirical orthogonal function (EOF) analysis demonstrate the prevalence of a midlatitude trough pattern when TC-related rainfall occurs in the southwestern United States. Conversely, the presence of a strong subtropical ridge tends to prevent such events from occurring and limits TC-related rainfall to Mexico. These statistically significant patterns correspond well with previous work. The El Niño–Southern Oscillation phenomenon is shown to have some effect on eastern North Pacific TC impacts on the southwestern United States, as shifts in the general circulation can subsequently influence which regions receive rainfall from TCs or their remnants. The Pacific decadal oscillation may have a greater influence during the period of study as evidenced by EOF analysis of sea surface temperature anomalies.

Full access
Elizabeth A. Ritchie
and
Russell L. Elsberry

Abstract

Whether the tropical cyclone remnants will become a significant extratropical cyclone during the reintensification stage of extratropical transition is a complex problem because of the uncertainty in the tropical cyclone, the midlatitude circulation, the subtropical anticyclone, and the nonlinear interactions among these systems. In a previous study, the authors simulated the impact of the strength of the midlatitude circulation trough without changing its phasing with the tropical cyclone. In this study, the impact of phasing is simulated by fixing the initial position and amplitude of the midlatitude trough and varying the initial position of the tropical cyclone. The peak intensity of the extratropical cyclone following the extratropical transition is strongly dependent on the phasing, which leads to different degrees of interaction with the midlatitude baroclinic zone. Many aspects of the simulated circulation, temperature, and precipitation fields appear quite realistic for the reintensifying and dissipating cases. Threshold values of various parameters in quadrants near and far from the tropical cyclone are extracted that discriminate well between reintensifiers and dissipators. The selection and distribution of threshold parameters are consistent with the Petterssen type-B conceptual model for extratropical cyclone development. Thus, these simulations suggest that phasing between the tropical cyclone and the midlatitude trough is a critical factor in predicting the reintensification stage of extratropical transition.

Full access
Difei Deng
and
Elizabeth A. Ritchie

Abstract

Tropical Cyclone Oswald (2013) is considered to be one of the highest-impact storms to make landfall in northern Australia even though it only reached a maximum category 1 intensity on the Australian category scale. After making landfall on the west coast of Cape York Peninsula, Oswald turned southward, and persisted for more than 7 days moving parallel to the coastline as far south as 30°S. As one of the wettest tropical cyclones (TCs) in Australian history, the favorable configurations of a lower-latitude active monsoon trough and two consecutive midlatitude trough–jet systems generally contributed to the maintenance of the Oswald circulation over land and prolonged rainfall. As a result, Oswald produced widespread heavy rainfall along the east coast with three maximum centers near Weipa, Townsville, and Rockhampton, respectively. Using high-resolution WRF simulations, the mechanisms associated with TC Oswald’s rainfall are analyzed. The results show that the rainfall involved different rainfall mechanisms at each stage. The land–sea surface friction contrast, the vertical wind shear, and monsoon trough were mostly responsible for the intensity and location for the first heavy rainfall center on the Cape York Peninsula. The second torrential rainfall near Townsville was primarily a result of the local topography and land–sea frictional convergence in a conditionally unstable monsoonal environment with frictional convergence due to TC motion modulating some offshore rainfall. The third rainfall area was largely dominated by persistent high vertical wind shear forcing, favorable large-scale quasigeostrophic dynamic lifting from two midlatitude trough–jet systems, and mesoscale frontogenesis lifting.

Free access
David E. Kofron
,
Elizabeth A. Ritchie
, and
J. Scott Tyo

Abstract

As a tropical cyclone moves poleward and interacts with the midlatitude circulation, the question of whether it will undergo extratropical transition (ET) and, if it does, whether it will reintensify or dissipate, is a complex problem. Several quantities have been proposed in previous studies to describe extratropical transition including frontogenesis, 500-hPa geopotential heights, and cyclone phase-space parameters. In this study, these parameters are explored for their utility in defining an ET time using the Navy’s Operational Global Assimilation and Prediction System gridded analyses. The 500-hPa geopotential heights and frontogenesis currently do not have objective numerical definitions. Therefore, this study attempts to establish and examine threshold values that may be used to objectively define the ET time. Cyclone phase space already has numerical threshold values that can be examined.

Results show that the 500-hPa geopotential height open wave distinguishes 81 of 82 cases, but it fails to discriminate between transitioning ET and recurving non-ET cases and cannot be determined automatically. The 2D scalar frontogenesis distinguishes 77 of 82 cases but does not discriminate between transitioning ET and recurving non-ET cases. Finally, phase space successfully distinguishes 81 of 82 cases for the “ET time” defined by the asymmetry parameter but is only successful at capturing transitioning ET and recurving non-ET cases properly for 60 of 82 cases. All of the definitions are found to have disadvantages that preclude them from providing consistent guidance for when extratropical transition of a poleward-recurving tropical cyclone is occurring.

Full access
David E. Kofron
,
Elizabeth A. Ritchie
, and
J. Scott Tyo

Abstract

As a tropical cyclone moves poleward and interacts with the midlatitude circulation, the question of whether it will undergo extratropical transition (ET) and, if it does, whether it will reintensify or dissipate, is a complex problem. Uncertainties include the tropical cyclone, the midlatitude circulation, the subtropical anticyclone, and the nonlinear interactions among these systems. A large part of the uncertainty is due to a lack of an understanding of when extratropical transition begins and how it progresses. In this study, absolute potential vorticity and isentropic, or Ertel’s, potential vorticity is examined for its ability to more consistently determine significant times (i.e., beginning or end) of the ET life cycle using the Navy Operational Global Assimilation and Prediction System gridded analyses.

It is found that isentropic potential vorticity on the 330-K potential temperature isentropic level is a good discriminator for examining the extratropical transition of tropical cyclones. At this level, a consistent “ET time” is defined as when the TC-centered circular average of isentropic potential vorticity reaches a minimum value. All 82 tropical cyclones moving into the midlatitudes meet this criterion. The completion of extratropical transition for the reintensifying cases is defined as when the storm exceeds an isentropic potential vorticity threshold value of 1.6 PVU at the 330-K potential temperature isentropic level. The success rate of this threshold value for the completion of extratropical transition for the reintensification cases is found to be 94.3% with a 27.6% false-alarm rate.

Full access
Paul A. Hirschberg
,
Perry C. Shafran
,
Russell L. Elsberry
, and
Elizabeth A. Ritchie

Abstract

Analyses and forecasts from a modern data assimilation and modeling system are used to evaluate the impact of a special rawinsonde dataset of 3-h soundings at seven sites interspersed with the seven regular sites along the West Coast (to form a so-called picket fence to intercept all transiting circulations) plus special 6-h rawinsondes over the National Weather Service Western Region. Whereas four intensive observing periods (IOPs) are available, only two representative IOPs (IOP-3 and IOP-4) are described here. The special observations collected during each 12-h cycle are analyzed with the National Centers for Environmental Prediction (NCEP) Eta Data Assimilation System in a cold start from the NCEP–National Center for Atmospheric Research reanalyses as the initial condition. Forecasts up to 48 h with and without the special picket fence observations are generated by the 32-km horizontal resolution Eta Model with 45 vertical levels.

The picket fence observations had little impact in some cases with smooth environmental flow. In other cases, relatively large initial increments were introduced offshore of the picket fence observations. However, these increments usually damped as they translated downstream. During IOP-3, the increments amplified east of the Rocky Mountains after only 24 h. Even though initially small, the increments in IOP-4 grew rapidly to 500-mb height increments ∼20–25 m with accompanying meridional wind increments of 5–8 m s−1 that contributed to maxima in shear vorticity. Many of the downstream amplifying circulations had associated precipitation increments ∼6 mm (6 h)−1 between the control and experimental forecasts. The equitable threat scores against the cooperative station set for the first 24-h forecasts during IOP-3 had higher values at the 0.50- and 0.75-in-thresholds for the picket fence dataset. However, the overall four-IOP equitable threat scores were similar.

Although the classical synoptic case was not achieved during the picket fence, these model forecasts suggest that such observations around the coast of the United States would impact the downstream forecasts when added in dynamically unstable regions. An ultimate picket fence of continuous remotely observing systems should be studied further.

Full access
Elizabeth A. Ritchie
,
Kimberly M. Wood
,
David S. Gutzler
, and
Sarah R. White

Abstract

Forty-three eastern North Pacific tropical cyclone remnants with varying impact on the southwestern United States during the period 1992–2005 are investigated. Of these, 35 remnants (81%) brought precipitation to some part of the southwestern United States and the remaining 8 remnants (19%) had precipitation that was almost entirely restricted to Mexico, although cloud cover did advect over the southwestern United States in some of these cases. Although the tropical cyclone–strength winds rapidly diminish upon making landfall, these systems still carry a large quantity of tropical moisture and, upon interaction with mountainous topography, are found to drop up to 30% of the local annual precipitation.

Based on common rainfall patterns and large-scale circulation features, the tropical cyclones are grouped into five categories. These include a northern recurving pattern that is more likely to bring rainfall to the southwestern United States; a southern recurving pattern that brings rainfall across northern Mexico and the Gulf Coast region; a largely north and/or northwestward movement pattern that brings rainfall to the west coast of the United States; a group that is blocked from the southwest by a ridge, which limits rainfall to Mexico; and a small group of cases that are not clearly any of the previous four types. Composites of the first four groups are shown and forecasting strategies for each are described.

Full access
Julia H. Keller
,
Christian M. Grams
,
Michael Riemer
,
Heather M. Archambault
,
Lance Bosart
,
James D. Doyle
,
Jenni L. Evans
,
Thomas J. Galarneau Jr.
,
Kyle Griffin
,
Patrick A. Harr
,
Naoko Kitabatake
,
Ron McTaggart-Cowan
,
Florian Pantillon
,
Julian F. Quinting
,
Carolyn A. Reynolds
,
Elizabeth A. Ritchie
,
Ryan D. Torn
, and
Fuqing Zhang

Abstract

The extratropical transition (ET) of tropical cyclones often has an important impact on the nature and predictability of the midlatitude flow. This review synthesizes the current understanding of the dynamical and physical processes that govern this impact and highlights the relationship of downstream development during ET to high-impact weather, with a focus on downstream regions. It updates a previous review from 2003 and identifies new and emerging challenges and future research needs. First, the mechanisms through which the transitioning cyclone impacts the midlatitude flow in its immediate vicinity are discussed. This “direct impact” manifests in the formation of a jet streak and the amplification of a ridge directly downstream of the cyclone. This initial flow modification triggers or amplifies a midlatitude Rossby wave packet, which disperses the impact of ET into downstream regions (downstream impact) and may contribute to the formation of high-impact weather. Details are provided concerning the impact of ET on forecast uncertainty in downstream regions and on the impact of observations on forecast skill. The sources and characteristics of the following key features and processes that may determine the manifestation of the impact of ET on the midlatitude flow are discussed: the upper-tropospheric divergent outflow, mainly associated with latent heat release in the troposphere below, and the phasing between the transitioning cyclone and the midlatitude wave pattern. Improving the representation of diabatic processes during ET in models and a climatological assessment of the ET’s impact on downstream high-impact weather are examples for future research directions.

Open access
Clark Evans
,
Kimberly M. Wood
,
Sim D. Aberson
,
Heather M. Archambault
,
Shawn M. Milrad
,
Lance F. Bosart
,
Kristen L. Corbosiero
,
Christopher A. Davis
,
João R. Dias Pinto
,
James Doyle
,
Chris Fogarty
,
Thomas J. Galarneau Jr.
,
Christian M. Grams
,
Kyle S. Griffin
,
John Gyakum
,
Robert E. Hart
,
Naoko Kitabatake
,
Hilke S. Lentink
,
Ron McTaggart-Cowan
,
William Perrie
,
Julian F. D. Quinting
,
Carolyn A. Reynolds
,
Michael Riemer
,
Elizabeth A. Ritchie
,
Yujuan Sun
, and
Fuqing Zhang

Abstract

Extratropical transition (ET) is the process by which a tropical cyclone, upon encountering a baroclinic environment and reduced sea surface temperature at higher latitudes, transforms into an extratropical cyclone. This process is influenced by, and influences, phenomena from the tropics to the midlatitudes and from the meso- to the planetary scales to extents that vary between individual events. Motivated in part by recent high-impact and/or extensively observed events such as North Atlantic Hurricane Sandy in 2012 and western North Pacific Typhoon Sinlaku in 2008, this review details advances in understanding and predicting ET since the publication of an earlier review in 2003. Methods for diagnosing ET in reanalysis, observational, and model-forecast datasets are discussed. New climatologies for the eastern North Pacific and southwest Indian Oceans are presented alongside updates to western North Pacific and North Atlantic Ocean climatologies. Advances in understanding and, in some cases, modeling the direct impacts of ET-related wind, waves, and precipitation are noted. Improved understanding of structural evolution throughout the transformation stage of ET fostered in large part by novel aircraft observations collected in several recent ET events is highlighted. Predictive skill for operational and numerical model ET-related forecasts is discussed along with environmental factors influencing posttransition cyclone structure and evolution. Operational ET forecast and analysis practices and challenges are detailed. In particular, some challenges of effective hazard communication for the evolving threats posed by a tropical cyclone during and after transition are introduced. This review concludes with recommendations for future work to further improve understanding, forecasts, and hazard communication.

Open access