Search Results

You are looking at 11 - 20 of 29 items for

  • Author or Editor: Eyad H. Atallah x
  • Refine by Access: All Content x
Clear All Modify Search
Christopher D. McCray
,
John R. Gyakum
, and
Eyad H. Atallah

Abstract

Freezing rain is an especially hazardous winter weather phenomenon that remains particularly challenging to forecast. Here, we identify the salient thermodynamic characteristics distinguishing long-duration (six or more hours) freezing rain events from short-duration (2–4 h) events in three regions of the United States and Canada from 1979 to 2016. In the northeastern United States and southeastern Canada, strong surface cold-air advection is not common during freezing rain events. Colder onset temperatures at the surface and in the near-surface cold layer support longer-duration events there, allowing heating mechanisms (e.g., the release of latent heat of fusion when rain freezes at the surface) to act for longer periods before the surface reaches 0°C and precipitation transitions to rain. In the south-central United States, cold air at the surface is replenished via continuous cold-air advection, reducing the necessity of cold onset surface temperatures for event persistence. Instead, longer-duration events are associated with warmer and deeper >0°C warm layers aloft and stronger advection of warm and moist air into this layer, delaying its erosion via cooling mechanisms such as melting. Finally, in the southeastern United States, colder and especially drier onset conditions in the cold layer are associated with longer-duration events, with evaporative cooling crucial to maintaining the subfreezing surface temperatures necessary for freezing rain. Through an improved understanding of the regional conditions supporting freezing rain event persistence, we hope to provide useful information to forecasters in their attempt to predict these potentially damaging events.

Free access
Shawn M. Milrad
,
Eyad H. Atallah
, and
John R. Gyakum

Abstract

The issue of quantitative precipitation forecasting continues to be a significant challenge in operational forecasting, particularly in regions susceptible to frequent and extreme precipitation events. St. John’s, Newfoundland, Canada, is one location affected frequently by such events, particularly in the cool season (October–April). These events can include flooding rains, paralyzing snowfall, and damaging winds.

A precipitation climatology is developed at St. John’s for 1979–2005, based on discrete precipitation events occurring over a time period of up to 48 h. Threshold amounts for three categories of precipitation events (extreme, moderate, and light) are statistically derived and utilized to categorize such events. Anomaly plots of sea level pressure (SLP), 500-hPa height, and precipitable water are produced for up to 3 days prior to the event. Results show that extreme events originate along the Gulf Coast of the United States, with the location of anomaly origin being farther to the north and west for consecutively weaker events, culminating in light events that originate from the upper Midwest of the United States and south-central Canada. In addition, upper-level precursor features are identified up to 3 days prior to the events and are mainly located over the west coast of North America.

Finally, results of a wind climatology produced for St. John’s depict a gradual shift in the predominant wind direction (from easterly to southwesterly) of both the 925-hPa geostrophic wind and 10-m observed wind from extreme to light events, inclusively. In addition, extreme events are characterized by almost exclusively easterly winds.

Full access
Shawn M. Milrad
,
Eyad H. Atallah
, and
John R. Gyakum

Abstract

St. John’s, Newfoundland, Canada (CYYT), is frequently affected by extreme precipitation events, particularly in the cool season (October–April). Previous work classified precipitation events at CYYT into categories by precipitation amount and a manual synoptic typing was performed on the 50 median extreme precipitation events, using two separate methods. Here, consecutive extreme precipitation events in December 2008 are analyzed. These events occurred over a 6-day period and produced over 125 mm of precipitation at CYYT. The first manual typing method, using a backward-trajectory analysis, results in both events being classified as “southwest,” which were previously defined as the majority of the backward trajectories originating in the Gulf of Mexico. The second method of manual synoptic typing finds that the first event is classified as a “cyclone,” while the second is a “frontal” event. A synoptic analysis of both events is conducted, highlighting important dynamic and thermodynamic structures. The first event was characterized by strong quasigeostrophic forcing for ascent in a weakly stable atmosphere in association with a rapidly intensifying extratropical cyclone off the coast of North America and transient high values of subtropical moisture. The second event was characterized by primarily frontogenetical forcing for ascent in a weakly stable atmosphere in the presence of quasi-stationary high values of subtropical moisture, in association with a northeast–southwest-oriented baroclinic zone situated near CYYT. In sum, the synoptic structures responsible for the two events highlight rather disparate means to produce an extreme precipitation event at CYYT.

Full access
Shawn M. Milrad
,
Eyad H. Atallah
, and
John R. Gyakum

Abstract

The St. Lawrence River valley (SLRV) is an important orographic feature in eastern Canada that can affect surface wind patterns and contribute to locally higher amounts of precipitation. The impact of the SLRV on precipitation distributions associated with transitioning, or transitioned, tropical cyclones that approached the region is assessed. Such cases can result in heavy precipitation during the warm season, as during the transition of Hurricane Ike (2008). Thirty-eight tropical cyclones tracked within 500 km of the SLRV from 1979 to 2011. Utilizing the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR), 19 of the 38 cases (group A) had large values of ageostrophic frontogenesis within and parallel to the SLRV, in a region of northeasterly surface winds associated with pressure-driven wind channeling. Using composite and case analyses, results show that the heaviest precipitation is often located within the SLRV, regardless of the location of large-scale forcing for ascent, and is concomitant with ageostrophic frontogenesis. The suggested physical pathway for precipitation modulation in the SLRV is as follows. Valley-induced near-surface ageostrophic frontogenesis is due to pressure-driven wind channeling as a result of the along-valley pressure gradient [typically exceeding 0.4 hPa (100 km)−1] established by the approaching cyclone. Near-surface cold-air advection as a result of the northeasterly pressure-driven channeling results in a temperature inversion, similar to what is observed in cool-season wind-channeling cases. The ageostrophic frontogenesis, acting as a mesoscale ascent-focusing mechanism, helps air parcels to rise above the temperature inversion into a conditionally unstable atmosphere, which results in enhanced precipitation focused along the SLRV.

Full access
Alissa Razy
,
Shawn M. Milrad
,
Eyad H. Atallah
, and
John R. Gyakum

Abstract

Orographic wind channeling, defined as dynamically and thermally induced processes that force wind to blow along the axis of a valley, is a common occurrence along the St. Lawrence River Valley (SLRV) in Quebec, Canada, and produces substantial observed weather impacts at stations along the valley, including Montreal (CYUL). Cold-season observed north-northeast (n = 55) and south-southeast (n = 16) surface wind events at CYUL are identified from 1979 to 2002. The authors partition the north-northeast wind events into four groups using manual synoptic typing. Types A and D (“inland cyclone” and “northwestern cyclone”) are associated with strong lower-tropospheric geostrophic warm-air advection and near-surface pressure-driven channeling of cold air from the north-northeast, along the axis of the SLRV. Type C (“anticyclone”) shows no evidence of a surface cyclone and thus is the least associated with inclement weather at CYUL, whereas type B (“coastal cyclone”) is associated with predominantly forced wind channeling along the SLRV. Type D of the north-northeast wind events and all south-southeast wind events exhibit similar sea level pressure patterns. The respective magnitudes of the pressure gradients in the Lake Champlain Valley south of CYUL and the SLRV play a large role in determining the favored wind direction. Soundings of the various event types illustrate substantial differences in temperature structure, with a large near-surface temperature inversion particularly prevalent in north-northeast events. The results of this study may provide guidance in forecasting winds, temperatures, and observed weather in and around the SLRV, given certain synoptic-scale regimes.

Full access
Shawn M. Milrad
,
Kelly Lombardo
,
Eyad H. Atallah
, and
John R. Gyakum

Abstract

The 19–21 June 2013 Alberta flood was the second costliest ($6 billion CAD) natural disaster in Canadian history, trailing only the 2016 Fort McMurray, Alberta, Canada, wildfires. One of the primary drivers was an extreme rainfall event that resulted in 75–150 mm of precipitation in the foothills west of Calgary, Canada. Here, the mesoscale dynamics and thermodynamics that contributed to the extreme rainfall event are elucidated through high-resolution numerical model simulations. In addition, terrain reduction model sensitivity experiments using Gaussian smoothing techniques quantify the importance of orography in producing the extreme rainfall event. It is suggested that the extreme rainfall event was initially characterized by the formation of a surface cyclone on the eastern side of the Canadian Rockies due to quasigeostrophic (QG) mechanisms. Orographic processes and diabatic heating feedbacks maintained the surface cyclone throughout the event, extending the duration of both easterly upslope flow and QG forcing for ascent in the flood region. The long-duration ascent and associated condensational heat release in the flood region vertically redistributed potential vorticity, anchoring and further extending the duration of the surface cyclone, upslope flow, and the rainfall. Although the magnitudes of ascent and precipitation were smaller in 10% and 25% reduced terrain simulations, only a terrain reduction of greater than 25% drastically altered the location and magnitude of the heaviest precipitation and the associated physical mechanisms.

Full access
Lisa M. Hryciw
,
Eyad H. Atallah
,
Shawn M. Milrad
, and
John R. Gyakum

Abstract

Drought is a complex natural hazard that is endemic to the Canadian prairies. The 1999–2005 Canadian prairie drought, which had great socioeconomic impacts, was meteorologically unique in that it did not conform to the traditional persistent positive Pacific–North American (PNA) pattern and west coast ridging paradigm normally associated with prairie drought. The purpose of this study is to diagnose the unique synoptic-scale mechanisms responsible for modulating subsidence during this drought. Using 30-day running means of the percent of normal precipitation from station data, key severe dry periods during 1999–2005 are identified. Analysis of the mean fields from reanalysis data shows that these dry events can be grouped into three upper-level flow categories: amplified warm, amplified cold, and zonal. Amplified warm cases match the traditional ridging paradigm, while amplified cold and zonal cases elucidate the fact that cold-air advection and downsloping flow, respectively, can also be important subsidence mechanisms during a Canadian prairie drought. In all, the 1999–2005 drought was more meteorologically complex on the synoptic scale than previous historic prairie droughts. Finally, a brief historical perspective shows that the drought was centered in 2001–02 and was not as severe as historical droughts, suggesting that societal vulnerability also played a substantial role in the impacts of the 1999–2005 drought.

Full access
Ron McTaggart-Cowan
,
Lance F. Bosart
,
John R. Gyakum
, and
Eyad H. Atallah

Abstract

The devastating effects of Hurricane Katrina (2005) on the Gulf Coast of the United States are without compare for natural disasters in recent times in North America. With over 1800 dead and insured losses near $40 billion (U.S. dollars), Katrina ranks as the costliest and one of the deadliest Atlantic hurricanes in history. This study documents the complex life cycle of Katrina, a storm that was initiated by a tropical transition event in the Bahamas. Katrina intensified to a category-1 hurricane shortly before striking Miami, Florida; however, little weakening was observed as the system crossed the Florida peninsula. An analog climatology is used to show that this behavior is consistent with the historical record for storms crossing the southern extremity of the peninsula. Over the warm Gulf of Mexico waters, Katrina underwent two periods of rapid intensification associated with a warm core ring shed by the Loop Current. Between these spinup stages, the storm doubled in size, leading to a monotonic increase in power dissipation until Katrina reached a superintense state on 28 September. A pair of extremely destructive landfalls in Louisiana followed the weakening of the system over shelf waters. Despite its strength as a hurricane, Katrina did not reintensify following extratropical transition. The evolution of the storm’s outflow anticyclone, however, led to a perturbation of the midlatitude flow that is shown in a companion study to influence the Northern Hemisphere over a period of 2 weeks. An understanding of the varied components of Katrina’s complex evolution is necessary for further developing analysis and forecasting techniques as they apply to storms that form near the North American continent and rapidly intensify over the Gulf of Mexico. Given the observed overall increase in Atlantic hurricane activity since the mid-1990s, an enhanced appreciation for the forcings involved in such events could help to mitigate the impact of similar severe hurricanes in the future.

Full access
Ron McTaggart-Cowan
,
Lance F. Bosart
,
John R. Gyakum
, and
Eyad H. Atallah

Abstract

The landfall of Hurricane Katrina (2005) near New Orleans, Louisiana, on 29 August 2005 will be remembered as one of the worst natural disasters in the history of the United States. By comparison, the extratropical transition (ET) of the system as it accelerates poleward over the following days is innocuous and the system weakens until its eventual demise off the coast of Greenland. The extent of Katrina’s perturbation of the midlatitude flow would appear to be limited given the lack of reintensification or downstream development during ET. However, the slow progression of a strong upper-tropospheric warm pool across the North Atlantic Ocean in the week following Katrina’s landfall prompts the question of whether even a nonreintensifying ET event can lead to significant modification of the midlatitude flow. Analysis of Hurricane Katrina’s outflow layer after landfall suggests that it does not itself make up the long-lived midlatitude warm pool. However, the interaction between Katrina’s anticyclonic outflow and an approaching baroclinic trough is shown to establish an anomalous southwesterly conduit or “freeway” that injects a preexisting tropospheric warm pool over the southwestern United States into the midlatitudes. This warm pool reduces predictability in medium-range forecasts over the North Atlantic and Europe while simultaneously aiding in the development of Hurricanes Maria and Nate. The origin of the warm pool is shown to be the combination of anticyclonic upper-level features generated by eastern Pacific Hurricane Hilary and the south Asian anticyclone (SAA). The hemispheric nature of the connections involved with the development of the warm pool and its injection into the extratropics has an impact on forecasting, since the predictability issue associated with ET in this case involves far more than the potential reintensification of the transitioning system itself.

Full access
Ron McTaggart-Cowan
,
Eyad H. Atallah
,
John R. Gyakum
, and
Lance F. Bosart

Abstract

A detailed analysis of the complex life cycle of Hurricane Juan (in 2003) is undertaken to elucidate the structures and forcings that prevailed over the period leading up to the hurricane’s landfall in Halifax, Nova Scotia, Canada. Despite the presence of easterly wave precursors, Hurricane Juan’s initial development is shown to occur in a baroclinic environment beneath a low-latitude potential vorticity streamer. This feature interacts with a lower-level shear line as the incipient vortex begins to effectively focus ascent and convection. The system undergoes a slow tropical transition over a period of several days as the deep-layer shear over the developing storm decreases. The hurricane is repeatedly perturbed by subsynoptic-scale waves traveling along the leading edge of a large upstream trough. However, Hurricane Juan maintains its tropical structure despite its relatively high formation latitude (28°N) and its northward trajectory. The unusual persistence of the storm’s tropical nature as it propagates northward is of primary interest in this study. In particular, the role of persistent ridging along the east coast of North America is investigated both in high-resolution analyses for Hurricane Juan and in a compositing framework. Dynamic tropopause, quasigeostrophic, and modified Eady model diagnostics are used to elucidate the interactions between Hurricane Juan and this amplified midlatitude flow. Given the strength and persistence of the anomalous ridge–trough couplet both in the case diagnosis and in the composite fields, the study concludes that the presence of prestorm, high-amplitude ridging along the east coast likely reinforced by diabatic ridging downshear of the storm itself produces an environment both dynamically and thermodynamically conducive to the high-latitude landfall of hurricanes still in the tropical phase.

Full access