Search Results
You are looking at 11 - 20 of 72 items for
- Author or Editor: Fan Wang x
- Refine by Access: All Content x
Abstract
The summer Asian–Pacific oscillation (APO) is a dominant teleconnection pattern over the extratropical Northern Hemisphere that links the large-scale atmospheric circulation anomalies over the Asian–North Pacific Ocean sector. In this study, the direct Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) model outputs from 1960 to 2001, which are limited in predicting the interannual variability of the summer Asian upper-tropospheric temperature and the decadal variations, are applied using the interannual increment approach to improve the predictions of the summer APO. By treating the year-to-year increment as the predictand, the interannual increment scheme is shown to significantly improve the predictive ability for the interannual variability of the summer Asian upper-tropospheric temperature and the decadal variations. The improvements for the interannual and interdecadal summer APO variability predictions in the interannual increment scheme relative to the original scheme are clear and significant. Compared with the DEMETER direct outputs, the statistical model with two predictors of APO and sea surface temperature anomaly over the Atlantic shows a significantly improved ability to predict the interannual variability of the summer rainfall over the middle and lower reaches of the Yangtze River valley (SRYR). This study therefore describes a more efficient approach for predicting the APO and the SRYR.
Abstract
The summer Asian–Pacific oscillation (APO) is a dominant teleconnection pattern over the extratropical Northern Hemisphere that links the large-scale atmospheric circulation anomalies over the Asian–North Pacific Ocean sector. In this study, the direct Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) model outputs from 1960 to 2001, which are limited in predicting the interannual variability of the summer Asian upper-tropospheric temperature and the decadal variations, are applied using the interannual increment approach to improve the predictions of the summer APO. By treating the year-to-year increment as the predictand, the interannual increment scheme is shown to significantly improve the predictive ability for the interannual variability of the summer Asian upper-tropospheric temperature and the decadal variations. The improvements for the interannual and interdecadal summer APO variability predictions in the interannual increment scheme relative to the original scheme are clear and significant. Compared with the DEMETER direct outputs, the statistical model with two predictors of APO and sea surface temperature anomaly over the Atlantic shows a significantly improved ability to predict the interannual variability of the summer rainfall over the middle and lower reaches of the Yangtze River valley (SRYR). This study therefore describes a more efficient approach for predicting the APO and the SRYR.
Abstract
In this study, the authors found that the summer precipitation over China experienced different decadal variation features from north to south after the late 1990s. In northeastern and North China and the lower–middle reaches of the Yangtze River, precipitation decreased after 1999, while precipitation experienced a significant reduction over South and southwestern China and a significant increase over the southern parts of Hetao region and Huaihe River valley after 2003. The authors next analyzed the associated decadal variation of the atmospheric circulation and attempted to identify the mechanisms causing the two decadal variations of precipitation. The wind anomalies for the former exhibit a barotropic meridional dipole pattern, with anticyclonic anomalies over Mongolia to northern China and cyclonic anomalies over the southeastern Chinese coast to the northwestern Pacific. For the latter, there is a southeast–northwest-oriented dipole pattern in the middle and lower troposphere, with cyclonic anomalies over the northern parts of the Tibetan Plateau and anticyclonic anomalies over the lower–middle reaches of the Yangtze River to southern Japan. An anomalous anticyclone dominates the upper troposphere over China south of 40°N. The authors further found that the summer sea surface temperature (SST) warming over the tropical Atlantic played an important role in the decadal variation around 2003 via inducing teleconnections over Eurasia. In contrast, the decadal variation around 1999 may be caused by the phase shift of the Pacific decadal oscillation (PDO), as has previously been indicated.
Abstract
In this study, the authors found that the summer precipitation over China experienced different decadal variation features from north to south after the late 1990s. In northeastern and North China and the lower–middle reaches of the Yangtze River, precipitation decreased after 1999, while precipitation experienced a significant reduction over South and southwestern China and a significant increase over the southern parts of Hetao region and Huaihe River valley after 2003. The authors next analyzed the associated decadal variation of the atmospheric circulation and attempted to identify the mechanisms causing the two decadal variations of precipitation. The wind anomalies for the former exhibit a barotropic meridional dipole pattern, with anticyclonic anomalies over Mongolia to northern China and cyclonic anomalies over the southeastern Chinese coast to the northwestern Pacific. For the latter, there is a southeast–northwest-oriented dipole pattern in the middle and lower troposphere, with cyclonic anomalies over the northern parts of the Tibetan Plateau and anticyclonic anomalies over the lower–middle reaches of the Yangtze River to southern Japan. An anomalous anticyclone dominates the upper troposphere over China south of 40°N. The authors further found that the summer sea surface temperature (SST) warming over the tropical Atlantic played an important role in the decadal variation around 2003 via inducing teleconnections over Eurasia. In contrast, the decadal variation around 1999 may be caused by the phase shift of the Pacific decadal oscillation (PDO), as has previously been indicated.
Abstract
A new visible (VIS; 0.55–0.9 μm) albedo normalization method, that is, the quasi-Lambertian surface adjustment (QLSA), is developed herein by using the geostationary meteorological satellite data and radiative transfer model. Taking the variation of relative locations between the sun, satellite, and clouds into account, the QLSA effectively reduces the inconsistencies in the VIS image brightness caused by the Lambertian surface approximation to cloud tops (i.e., the reflection characteristic is isotropic). The evaluation, using Chinese and Japanese geostationary satellite data, shows that the QLSA is more effective and accurate than three other albedo normalization methods currently in use. The new algorithm is applicable in regions with solar zenith angle and satellite zenith angle less than 60°, which, in the summertime, approximately corresponds to the time range from 0800 to 1600 local time (LT).
Abstract
A new visible (VIS; 0.55–0.9 μm) albedo normalization method, that is, the quasi-Lambertian surface adjustment (QLSA), is developed herein by using the geostationary meteorological satellite data and radiative transfer model. Taking the variation of relative locations between the sun, satellite, and clouds into account, the QLSA effectively reduces the inconsistencies in the VIS image brightness caused by the Lambertian surface approximation to cloud tops (i.e., the reflection characteristic is isotropic). The evaluation, using Chinese and Japanese geostationary satellite data, shows that the QLSA is more effective and accurate than three other albedo normalization methods currently in use. The new algorithm is applicable in regions with solar zenith angle and satellite zenith angle less than 60°, which, in the summertime, approximately corresponds to the time range from 0800 to 1600 local time (LT).
Abstract
Ningaloo Niño—the interannually occurring warming episode in the southeast Indian Ocean (SEIO)—has strong signatures in ocean temperature and circulation and exerts profound impacts on regional climate and marine biosystems. Analysis of observational data and eddy-resolving regional ocean model simulations reveals that the Ningaloo Niño/Niña can also induce pronounced variability in ocean salinity, causing large-scale sea surface salinity (SSS) freshening of 0.15–0.20 psu in the SEIO during its warm phase. Model experiments are performed to understand the underlying processes. This SSS freshening is mutually caused by the increased local precipitation (~68%) and enhanced freshwater transport of the Indonesian Throughflow (ITF; ~28%) during Ningaloo Niño events. The effects of other processes, such as local winds and evaporation, are secondary (~18%). The ITF enhances the southward freshwater advection near the eastern boundary, which is critical in causing the strong freshening (>0.20 psu) near the Western Australian coast. Owing to the strong modulation effect of the ITF, SSS near the coast bears a higher correlation with El Niño–Southern Oscillation (0.57, 0.77, and 0.70 with the Niño-3, Niño-4, and Niño-3.4 indices, respectively) than sea surface temperature (−0.27, −0.42, and −0.35) during 1993–2016. Yet, an idealized model experiment with artificial damping for salinity anomaly indicates that ocean salinity has limited impact on ocean near-surface stratification and thus minimal feedback effect on the warming of Ningaloo Niño.
Abstract
Ningaloo Niño—the interannually occurring warming episode in the southeast Indian Ocean (SEIO)—has strong signatures in ocean temperature and circulation and exerts profound impacts on regional climate and marine biosystems. Analysis of observational data and eddy-resolving regional ocean model simulations reveals that the Ningaloo Niño/Niña can also induce pronounced variability in ocean salinity, causing large-scale sea surface salinity (SSS) freshening of 0.15–0.20 psu in the SEIO during its warm phase. Model experiments are performed to understand the underlying processes. This SSS freshening is mutually caused by the increased local precipitation (~68%) and enhanced freshwater transport of the Indonesian Throughflow (ITF; ~28%) during Ningaloo Niño events. The effects of other processes, such as local winds and evaporation, are secondary (~18%). The ITF enhances the southward freshwater advection near the eastern boundary, which is critical in causing the strong freshening (>0.20 psu) near the Western Australian coast. Owing to the strong modulation effect of the ITF, SSS near the coast bears a higher correlation with El Niño–Southern Oscillation (0.57, 0.77, and 0.70 with the Niño-3, Niño-4, and Niño-3.4 indices, respectively) than sea surface temperature (−0.27, −0.42, and −0.35) during 1993–2016. Yet, an idealized model experiment with artificial damping for salinity anomaly indicates that ocean salinity has limited impact on ocean near-surface stratification and thus minimal feedback effect on the warming of Ningaloo Niño.
Abstract
Interannual variabilities of sea level and upper-ocean gyre circulation of the western tropical Pacific Ocean (WTPO) have been predominantly attributed to El Niño–Southern Oscillation (ENSO). The results of the present study put forward important modulation effects by the Indian Ocean dipole (IOD) mode. The observed sea level in the WTPO shows significant instantaneous and lagged correlations (around −0.60 and 0.40, respectively) with the IOD mode index (DMI). A composite of 14 “independent” IOD events for 1958–2017 shows negative sea level anomalies (SLAs) of 4–7 cm in the WTPO during positive IOD events and positive SLAs of 6–8 cm in the following year that are opposite in sign to the El Niño effect. The IOD impacts are reproduced by large-ensemble simulations of a climate model that generate respectively 430 and 519 positive and negative independent IOD events. A positive IOD induces westerly winds over the western and central tropical Pacific and causes negative SLAs through Ekman upwelling, and it facilitates the establishment of a La Niña condition in the following year that involves enhanced Pacific trade winds and causes positive SLAs in the WTPO. Ocean model experiments confirm that the IOD affects the WTPO sea level mainly through modulating the tropical Pacific winds. Variability of the Indonesian Throughflow (ITF) induced by IOD winds has a relatively weak effect on the WTPO. The IOD’s impacts on the major upper-ocean currents are also considerable, causing anomalies of 1–4 Sv (1 Sv ≡ 106 m3 s−1) in the South Equatorial Current (SEC) and North Equatorial Countercurrent (NECC) volume transports.
Abstract
Interannual variabilities of sea level and upper-ocean gyre circulation of the western tropical Pacific Ocean (WTPO) have been predominantly attributed to El Niño–Southern Oscillation (ENSO). The results of the present study put forward important modulation effects by the Indian Ocean dipole (IOD) mode. The observed sea level in the WTPO shows significant instantaneous and lagged correlations (around −0.60 and 0.40, respectively) with the IOD mode index (DMI). A composite of 14 “independent” IOD events for 1958–2017 shows negative sea level anomalies (SLAs) of 4–7 cm in the WTPO during positive IOD events and positive SLAs of 6–8 cm in the following year that are opposite in sign to the El Niño effect. The IOD impacts are reproduced by large-ensemble simulations of a climate model that generate respectively 430 and 519 positive and negative independent IOD events. A positive IOD induces westerly winds over the western and central tropical Pacific and causes negative SLAs through Ekman upwelling, and it facilitates the establishment of a La Niña condition in the following year that involves enhanced Pacific trade winds and causes positive SLAs in the WTPO. Ocean model experiments confirm that the IOD affects the WTPO sea level mainly through modulating the tropical Pacific winds. Variability of the Indonesian Throughflow (ITF) induced by IOD winds has a relatively weak effect on the WTPO. The IOD’s impacts on the major upper-ocean currents are also considerable, causing anomalies of 1–4 Sv (1 Sv ≡ 106 m3 s−1) in the South Equatorial Current (SEC) and North Equatorial Countercurrent (NECC) volume transports.
Abstract
The southeast Indian Ocean (SEIO) exhibits decadal variability in sea surface temperature (SST) with amplitudes of ~0.2–0.3 K and covaries with the central Pacific (r = −0.63 with Niño-4 index for 1975–2010). In this study, the generation mechanisms of decadal SST variability are explored using an ocean general circulation model (OGCM), and its impact on atmosphere is evaluated using an atmospheric general circulation model (AGCM). OGCM experiments reveal that Pacific forcing through the Indonesian Throughflow explains <20% of the total SST variability, and the contribution of local wind stress is also small. These wind-forced anomalies mainly occur near the Western Australian coast. The majority of SST variability is attributed to surface heat fluxes. The reduced upward turbulent heat flux (Q T ; latent plus sensible heat flux), owing to decreased wind speed and anomalous warm, moist air advection, is essential for the growth of warm SST anomalies (SSTAs). The warming causes reduction of low cloud cover that increases surface shortwave radiation (SWR) and further promotes the warming. However, the resultant high SST, along with the increased wind speed in the offshore area, enhances the upward Q T and begins to cool the ocean. Warm SSTAs co-occur with cyclonic low-level wind anomalies in the SEIO and enhanced rainfall over Indonesia and northwest Australia. AGCM experiments suggest that although the tropical Pacific SST has strong effects on the SEIO region through atmospheric teleconnection, the cyclonic winds and increased rainfall are mainly caused by the SEIO warming through local air–sea interactions.
Abstract
The southeast Indian Ocean (SEIO) exhibits decadal variability in sea surface temperature (SST) with amplitudes of ~0.2–0.3 K and covaries with the central Pacific (r = −0.63 with Niño-4 index for 1975–2010). In this study, the generation mechanisms of decadal SST variability are explored using an ocean general circulation model (OGCM), and its impact on atmosphere is evaluated using an atmospheric general circulation model (AGCM). OGCM experiments reveal that Pacific forcing through the Indonesian Throughflow explains <20% of the total SST variability, and the contribution of local wind stress is also small. These wind-forced anomalies mainly occur near the Western Australian coast. The majority of SST variability is attributed to surface heat fluxes. The reduced upward turbulent heat flux (Q T ; latent plus sensible heat flux), owing to decreased wind speed and anomalous warm, moist air advection, is essential for the growth of warm SST anomalies (SSTAs). The warming causes reduction of low cloud cover that increases surface shortwave radiation (SWR) and further promotes the warming. However, the resultant high SST, along with the increased wind speed in the offshore area, enhances the upward Q T and begins to cool the ocean. Warm SSTAs co-occur with cyclonic low-level wind anomalies in the SEIO and enhanced rainfall over Indonesia and northwest Australia. AGCM experiments suggest that although the tropical Pacific SST has strong effects on the SEIO region through atmospheric teleconnection, the cyclonic winds and increased rainfall are mainly caused by the SEIO warming through local air–sea interactions.
Abstract
Intermediate-depth intraseasonal variability (ISV) at a 20–90-day period, as detected in velocity measurements from seven subsurface moorings in the tropical western Pacific, is interpreted in terms of equatorial Rossby waves. The moorings were deployed between 0° and 7.5°N along 142°E from September 2014 to October 2015. The strongest ISV energy at 1200 m occurs at 4.5°N. Peak energy at 4.5°N is also seen in an eddy-resolving global circulation model. An analysis of the model output identifies the source of the ISV as short equatorial Rossby waves with westward phase speed but southeastward and downward group velocity. Additionally, it is shown that a superposition of first three baroclinic modes is required to represent the ISV energy propagation. Further analysis using a 1.5-layer shallow water model suggests that the first meridional mode Rossby wave accounts for the specific meridional distribution of ISV in the western Pacific. The same model suggests that the tilted coastlines of Irian Jaya and Papua New Guinea, which lie to the south of the moorings, shift the location of the northern peak of meridional velocity oscillation from 3°N to near 4.5°N. The tilt of this boundary with respect to a purely zonal alignment therefore needs to be taken into account to explain this meridional shift of the peak. Calculation of the barotropic conversion rate indicates that the intraseasonal kinetic energy below 1000 m can be transferred into the mean flows, suggesting a possible forcing mechanism for intermediate-depth zonal jets.
Abstract
Intermediate-depth intraseasonal variability (ISV) at a 20–90-day period, as detected in velocity measurements from seven subsurface moorings in the tropical western Pacific, is interpreted in terms of equatorial Rossby waves. The moorings were deployed between 0° and 7.5°N along 142°E from September 2014 to October 2015. The strongest ISV energy at 1200 m occurs at 4.5°N. Peak energy at 4.5°N is also seen in an eddy-resolving global circulation model. An analysis of the model output identifies the source of the ISV as short equatorial Rossby waves with westward phase speed but southeastward and downward group velocity. Additionally, it is shown that a superposition of first three baroclinic modes is required to represent the ISV energy propagation. Further analysis using a 1.5-layer shallow water model suggests that the first meridional mode Rossby wave accounts for the specific meridional distribution of ISV in the western Pacific. The same model suggests that the tilted coastlines of Irian Jaya and Papua New Guinea, which lie to the south of the moorings, shift the location of the northern peak of meridional velocity oscillation from 3°N to near 4.5°N. The tilt of this boundary with respect to a purely zonal alignment therefore needs to be taken into account to explain this meridional shift of the peak. Calculation of the barotropic conversion rate indicates that the intraseasonal kinetic energy below 1000 m can be transferred into the mean flows, suggesting a possible forcing mechanism for intermediate-depth zonal jets.
Abstract
The deep channel north of New Guinea (NG) is the choke site for the upper deep branches of the Pacific meridional overturning circulation (U-PMOC). The U-PMOC is a crucial element of the ocean’s climate and biogeochemical systems. It carries the mixed water of the Upper Circumpolar Water and North Pacific Deep Water with a potential temperature over 1.2°–2.2°C. The pathway and volume transport of U-PMOC through the deep channel north of NG are revealed by mooring measurements from 2014 to 2019. Mean U-PMOC is located at ∼2000–3500 m with a velocity core at 2550 m and is directed eastward. The U-PMOC shows a strong seasonal variability with a direction reversal from June to September. The oceanic reanalysis product GLORYS12V1 well reproduces the observed U-PMOC and is thus used to estimate the mean and standard deviation of U-PMOC’s volume transport as 2.19 ± 11.4 Sv (1 Sv ≡ 106 m3 s−1) and to explore the underlying dynamics of the U-PMOC. The seasonality of U-PMOC is induced by the vertical propagation of the Rossby energy through the upper ocean in the eastern Pacific to the deep ocean in the western Pacific. The mean eastward U-PMOC transport is forced by the zonal deep pressure gradient, which is mainly determined by the local upper-ocean processes above 500 m.
Abstract
The deep channel north of New Guinea (NG) is the choke site for the upper deep branches of the Pacific meridional overturning circulation (U-PMOC). The U-PMOC is a crucial element of the ocean’s climate and biogeochemical systems. It carries the mixed water of the Upper Circumpolar Water and North Pacific Deep Water with a potential temperature over 1.2°–2.2°C. The pathway and volume transport of U-PMOC through the deep channel north of NG are revealed by mooring measurements from 2014 to 2019. Mean U-PMOC is located at ∼2000–3500 m with a velocity core at 2550 m and is directed eastward. The U-PMOC shows a strong seasonal variability with a direction reversal from June to September. The oceanic reanalysis product GLORYS12V1 well reproduces the observed U-PMOC and is thus used to estimate the mean and standard deviation of U-PMOC’s volume transport as 2.19 ± 11.4 Sv (1 Sv ≡ 106 m3 s−1) and to explore the underlying dynamics of the U-PMOC. The seasonality of U-PMOC is induced by the vertical propagation of the Rossby energy through the upper ocean in the eastern Pacific to the deep ocean in the western Pacific. The mean eastward U-PMOC transport is forced by the zonal deep pressure gradient, which is mainly determined by the local upper-ocean processes above 500 m.
Abstract
The interannual variability of the boundary currents east of the Mindanao Island, including the Mindanao Current/Undercurrent (MC/MUC), is investigated using moored acoustic Doppler current profiler (ADCP) measurements combined with a series of numerical experiments. The ADCP mooring system was deployed east of the Mindanao Island at 7°59′N, 127°3′E during December 2010–August 2014. Depth-dependent interannual variability is detected in the two western boundary currents: strong and lower-frequency variability dominates the upper-layer MC, while weaker and higher-frequency fluctuation controls the subsurface MUC. Throughout the duration of mooring measurements, the weakest MC was observed in June 2012, in contrast to the maximum peaks in December 2010 and June 2014, while in the deeper layer the MUC shows speed peaks circa December 2010, January 2011, April 2013, and July 2014 and valleys circa June 2011, August 2012, and November 2013. Diagnostic analysis and numerical sensitivity experiments using a 2.5-layer reduced-gravity model indicate that wind forcing in the western Pacific Ocean is a driving agent in conditioning the interannual variability of MC and MUC. Results suggest that westward-propagating Rossby waves that generate in the western Pacific Ocean (roughly 150°–180°E) are of much significance in the interannual variability of the two boundary currents. Fluctuation of Ekman pumping due to local wind stress curl anomaly in the far western Pacific Ocean (roughly 120°–150°E) also plays a role in the interannual variability of the MC. The relationship between the MC/MUC and El Niño is discussed.
Abstract
The interannual variability of the boundary currents east of the Mindanao Island, including the Mindanao Current/Undercurrent (MC/MUC), is investigated using moored acoustic Doppler current profiler (ADCP) measurements combined with a series of numerical experiments. The ADCP mooring system was deployed east of the Mindanao Island at 7°59′N, 127°3′E during December 2010–August 2014. Depth-dependent interannual variability is detected in the two western boundary currents: strong and lower-frequency variability dominates the upper-layer MC, while weaker and higher-frequency fluctuation controls the subsurface MUC. Throughout the duration of mooring measurements, the weakest MC was observed in June 2012, in contrast to the maximum peaks in December 2010 and June 2014, while in the deeper layer the MUC shows speed peaks circa December 2010, January 2011, April 2013, and July 2014 and valleys circa June 2011, August 2012, and November 2013. Diagnostic analysis and numerical sensitivity experiments using a 2.5-layer reduced-gravity model indicate that wind forcing in the western Pacific Ocean is a driving agent in conditioning the interannual variability of MC and MUC. Results suggest that westward-propagating Rossby waves that generate in the western Pacific Ocean (roughly 150°–180°E) are of much significance in the interannual variability of the two boundary currents. Fluctuation of Ekman pumping due to local wind stress curl anomaly in the far western Pacific Ocean (roughly 120°–150°E) also plays a role in the interannual variability of the MC. The relationship between the MC/MUC and El Niño is discussed.
Abstract
Central Pacific (CP) El Niño (i.e., CP El Niño) events have occurred more frequently during recent decades. Wind stress patterns are argued to have significant effects on the generation and evolution of CP El Niño. However, the winds differ in different CP El Niño events, making it hard in previous studies to avoid overgeneralizing the timing and location of the winds that indeed matter. In this study, the theoretically favorable wind perturbations (FWPs) that may warm the Niño-4 region, in terms of their directions, horizontal structures, and bounds, in each month before the peak month (December) of CP El Niños are determined, using an adjoint sensitivity method. The mechanisms of the FWPs are interpreted. Primarily, zonal temperature advection via the equatorial wave–associated velocity anomalies is responsible. In particular, easterly FWPs over the central equatorial Pacific with off-equatorial westerly FWPs (constituting a wind structure with a strong north–south gradient) during the first half year can play a positive role in warming the Niño-4 region and so can the westerly FWPs over the western tropical Pacific, while westerly FWPs in the western-central tropical Pacific in the second half year show higher efficiency. Meanwhile, the particular wind structure of the first half year (i.e., the easterly anomaly over the central equatorial Pacific with strong wind stress curl off the equator) has also been verified to be able to produce a CP-type warming in an intermediate coupled model (ICM); similar wind stress anomalies had been observed in some CP El Niño events. Thus, the FWPs provide helpful guidance in analyzing the generation and evolving processes of the wind-driven CP El Niño.
Abstract
Central Pacific (CP) El Niño (i.e., CP El Niño) events have occurred more frequently during recent decades. Wind stress patterns are argued to have significant effects on the generation and evolution of CP El Niño. However, the winds differ in different CP El Niño events, making it hard in previous studies to avoid overgeneralizing the timing and location of the winds that indeed matter. In this study, the theoretically favorable wind perturbations (FWPs) that may warm the Niño-4 region, in terms of their directions, horizontal structures, and bounds, in each month before the peak month (December) of CP El Niños are determined, using an adjoint sensitivity method. The mechanisms of the FWPs are interpreted. Primarily, zonal temperature advection via the equatorial wave–associated velocity anomalies is responsible. In particular, easterly FWPs over the central equatorial Pacific with off-equatorial westerly FWPs (constituting a wind structure with a strong north–south gradient) during the first half year can play a positive role in warming the Niño-4 region and so can the westerly FWPs over the western tropical Pacific, while westerly FWPs in the western-central tropical Pacific in the second half year show higher efficiency. Meanwhile, the particular wind structure of the first half year (i.e., the easterly anomaly over the central equatorial Pacific with strong wind stress curl off the equator) has also been verified to be able to produce a CP-type warming in an intermediate coupled model (ICM); similar wind stress anomalies had been observed in some CP El Niño events. Thus, the FWPs provide helpful guidance in analyzing the generation and evolving processes of the wind-driven CP El Niño.