Search Results

You are looking at 11 - 19 of 19 items for

  • Author or Editor: G. J. Holland x
  • Refine by Access: All Content x
Clear All Modify Search
R. Rotunno
,
Y. Chen
,
W. Wang
,
C. Davis
,
J. Dudhia
, and
G. J. Holland
Full access
A. Henderson-Sellers
,
H. Zhang
,
G. Berz
,
K. Emanuel
,
W. Gray
,
C. Landsea
,
G. Holland
,
J. Lighthill
,
S-L. Shieh
,
P. Webster
, and
K. McGuffie

The very limited instrumental record makes extensive analyses of the natural variability of global tropical cyclone activities difficult in most of the tropical cyclone basins. However, in the two regions where reasonably reliable records exist (the North Atlantic and the western North Pacific), substantial multidecadal variability (particularly for intense Atlantic hurricanes) is found, but there is no clear evidence of long-term trends. Efforts have been initiated to use geological and geomorphological records and analysis of oxygen isotope ratios in rainfall recorded in cave stalactites to establish a paleoclimate of tropical cyclones, but these have not yet produced definitive results. Recent thermodynamical estimation of the maximum potential intensities (MPI) of tropical cyclones shows good agreement with observations.

Although there are some uncertainties in these MPI approaches, such as their sensitivity to variations in parameters and failure to include some potentially important interactions such as ocean spray feedbacks, the response of upper-oceanic thermal structure, and eye and eyewall dynamics, they do appear to be an objective tool with which to predict present and future maxima of tropical cyclone intensity. Recent studies indicate the MPI of cyclones will remain the same or undergo a modest increase of up to 10%–20%. These predicted changes are small compared with the observed natural variations and fall within the uncertainty range in current studies. Furthermore, the known omissions (ocean spray, momentum restriction, and possibly also surface to 300-hPa lapse rate changes) could all operate to mitigate the predicted intensification.

A strong caveat must be placed on analysis of results from current GCM simulations of the “tropical-cyclone-like” vortices. Their realism, and hence prediction skill (and also that of “embedded” mesoscale models), is greatly limited by the coarse resolution of current GCMs and the failure to capture environmental factors that govern cyclone intensity. Little, therefore, can be said about the potential changes of the distribution of intensities as opposed to maximum achievable intensity. Current knowledge and available techniques are too rudimentary for quantitative indications of potential changes in tropical cyclone frequency.

The broad geographic regions of cyclogenesis and therefore also the regions affected by tropical cyclones are not expected to change significantly. It is emphasized that the popular belief that the region of cyclogenesis will expand with the 26°C SST isotherm is a fallacy. The very modest available evidence points to an expectation of little or no change in global frequency. Regional and local frequencies could change substantially in either direction, because of the dependence of cyclone genesis and track on other phenomena (e.g., ENSO) that are not yet predictable. Greatly improved skills from coupled global ocean–atmosphere models are required before improved predictions are possible.

Full access
James J. Hack
,
Julie M. Caron
,
Stephen G. Yeager
,
Keith W. Oleson
,
Marika M. Holland
,
John E. Truesdale
, and
Philip J. Rasch

Abstract

The seasonal and annual climatological behavior of selected components of the hydrological cycle are presented from coupled and uncoupled configurations of the atmospheric component of the Community Climate System Model (CCSM) Community Atmosphere Model version 3 (CAM3). The formulations of processes that play a role in the hydrological cycle are significantly more complex when compared with earlier versions of the atmospheric model. Major features of the simulated hydrological cycle are compared against available observational data, and the strengths and weaknesses are discussed in the context of specified sea surface temperature and fully coupled model simulations.

The magnitude of the CAM3 hydrological cycle is weaker than in earlier versions of the model, and is more consistent with observational estimates. Major features of the exchange of water with the surface, and the vertically integrated storage of water in the atmosphere, are generally well captured on seasonal and longer time scales. The water cycle response to ENSO events is also very realistic. The simulation, however, continues to exhibit a number of long-standing biases, such as a tendency to produce double ITCZ-like structures in the deep Tropics, and to overestimate precipitation rates poleward of the extratropical storm tracks. The lower-tropospheric dry bias, associated with the parameterized treatment of convection, also remains a simulation deficiency. Several of these biases are exacerbated when the atmosphere is coupled to fully interactive surface models, although the larger-scale behavior of the hydrological cycle remains nearly identical to simulations with prescribed distributions of sea surface temperature and sea ice.

Full access
John L. McBride
,
B. W. Gunn
,
G. J. Holland
,
T. D. Keenan
,
N. E. Davidson
, and
William M. Frank

Abstract

Line integral techniques are used to calculate vertically integrated heat and moisture budgets over the Gulf of Carpentaria during Phase II of the Australian Monsoon Experiment (AMEX). The budget area is an array of six radiosondes in a monsoon environment, and the calculations are performed every 6 hours over a period of 33 days.

During convective outbreaks the integrated heating and drying of the large scale by the cumulonimbus activity has a magnitude of the order of 10°C day−1. The heat and moisture sources are dominated by the flux divergence terms, which account for over 90% of the variance. The observed warming is as large as ±1°C day−1 but is diurnally dominated and does not correspond to the latent heat release. The integrated moisture convergence has a high correlation with latent heat release but not with the measured moisture storage. The convective heat source is also highly correlated with middle tropospheric vertical velocity.

Mean budgets are presented for each of the four diurnal observation times. Also, budgets were run with each station, in turn, excluded from the sonde array to determine sensitivity of the results to the data network.

Full access
C. M. Bitz
,
K. M. Shell
,
P. R. Gent
,
D. A. Bailey
,
G. Danabasoglu
,
K. C. Armour
,
M. M. Holland
, and
J. T. Kiehl

Abstract

Equilibrium climate sensitivity of the Community Climate System Model, version 4 (CCSM4) is 3.20°C for 1° horizontal resolution in each component. This is about a half degree Celsius higher than in the previous version (CCSM3). The transient climate sensitivity of CCSM4 at 1° resolution is 1.72°C, which is about 0.2°C higher than in CCSM3. These higher climate sensitivities in CCSM4 cannot be explained by the change to a preindustrial baseline climate. This study uses the radiative kernel technique to show that, from CCSM3 to CCSM4, the global mean lapse-rate feedback declines in magnitude and the shortwave cloud feedback increases. These two warming effects are partially canceled by cooling because of slight decreases in the global mean water vapor feedback and longwave cloud feedback from CCSM3 to CCSM4.

A new formulation of the mixed layer, slab-ocean model in CCSM4 attempts to reproduce the SST and sea ice climatology from an integration with a full-depth ocean, and it is integrated with a dynamic sea ice model. These new features allow an isolation of the influence of ocean dynamical changes on the climate response when comparing integrations with the slab ocean and full-depth ocean. The transient climate response of the full-depth ocean version is 0.54 of the equilibrium climate sensitivity when estimated with the new slab-ocean model version for both CCSM3 and CCSM4. The authors argue the ratio is the same in both versions because they have about the same zonal mean pattern of change in ocean surface heat flux, which broadly resembles the zonal mean pattern of net feedback strength.

Full access
T. Keenan
,
S. Rutledge
,
R. Carbone
,
J. Wilson
,
T. Takahashi
,
P. May
,
N. Tapper
,
M. Platt
,
J. Hacker
,
S. Sekelsky
,
M. Moncrieff
,
K. Saito
,
G. Holland
,
A. Crook
, and
K. Gage

A description is given of the Maritime Continent Thunderstorm Experiment held over the Tiwi Islands (12°S, 130°E) during the period November–December 1995. The unique nature of regularly occurring storms over these islands enabled a study principally aimed at investigating the life cycle of island-initiated mesoscale convective systems within the Maritime Continent. The program objectives are first outlined and then selected results from various observationally based and modeling studies are summarized.

These storms are shown to depend typically on island-scale forcing although external mesoscale disturbances can result in significant storm activity as they pass over the heated island. Particular emphasis is given to summarizing the environmental characteristics and the impact this has on the location of storm development and the associated rainfall distribution.

The mean rainfall production from these storms is shown to be about 760 × 105 m3, with considerable variability. The mesoscale evolution is summarized and during the rapid development phase the interaction of storms with preexisting convergence zones is highlighted. In situ microphysical observations show the occurrence of very large rain drops (up to 8-mm diameter) and very large concentrations of ice crystals in the −10° to −60°C temperature range associated with the very intense updrafts. Occurrence of graupel aloft is shown to be strongly linked to cloud to ground lightning. Polarimetric radar-based rainfall estimates using specific differential phase shift are shown to be considerably better than reflectivity based estimates. Studies relating to the structure of anvil cloud and the effect on the radiative heating profile are also summarized. Initial attempts at modeling storm development are also presented. Two different nonhydrostatic models on days with markedly different evolution are employed and indicate that the models show considerable promise in their ability to develop mesoscale systems. However, important differences still remain between observed storm evolution and that modeled.

Full access
J. E. Kay
,
C. Deser
,
A. Phillips
,
A. Mai
,
C. Hannay
,
G. Strand
,
J. M. Arblaster
,
S. C. Bates
,
G. Danabasoglu
,
J. Edwards
,
M. Holland
,
P. Kushner
,
J.-F. Lamarque
,
D. Lawrence
,
K. Lindsay
,
A. Middleton
,
E. Munoz
,
R. Neale
,
K. Oleson
,
L. Polvani
, and
M. Vertenstein

Abstract

While internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920–2100) 30 times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 1000+-yr-long preindustrial control simulations (fully coupled, prognostic atmosphere and land only) allow assessment of internal climate variability in the absence of climate change. Comprehensive outputs, including many daily fields, are available as single-variable time series on the Earth System Grid for anyone to use. Early results demonstrate the substantial influence of internal climate variability on twentieth- to twenty-first-century climate trajectories. Global warming hiatus decades occur, similar to those recently observed. Internal climate variability alone can produce projection spread comparable to that in CMIP5. Scientists and stakeholders can use CESM-LE outputs to help interpret the observational record, to understand projection spread and to plan for a range of possible futures influenced by both internal climate variability and forced climate change.

Full access
James W. Hurrell
,
M. M. Holland
,
P. R. Gent
,
S. Ghan
,
Jennifer E. Kay
,
P. J. Kushner
,
J.-F. Lamarque
,
W. G. Large
,
D. Lawrence
,
K. Lindsay
,
W. H. Lipscomb
,
M. C. Long
,
N. Mahowald
,
D. R. Marsh
,
R. B. Neale
,
P. Rasch
,
S. Vavrus
,
M. Vertenstein
,
D. Bader
,
W. D. Collins
,
J. J. Hack
,
J. Kiehl
, and
S. Marshall

The Community Earth System Model (CESM) is a flexible and extensible community tool used to investigate a diverse set of Earth system interactions across multiple time and space scales. This global coupled model significantly extends its predecessor, the Community Climate System Model, by incorporating new Earth system simulation capabilities. These comprise the ability to simulate biogeochemical cycles, including those of carbon and nitrogen, a variety of atmospheric chemistry options, the Greenland Ice Sheet, and an atmosphere that extends to the lower thermosphere. These and other new model capabilities are enabling investigations into a wide range of pressing scientific questions, providing new foresight into possible future climates and increasing our collective knowledge about the behavior and interactions of the Earth system. Simulations with numerous configurations of the CESM have been provided to phase 5 of the Coupled Model Intercomparison Project (CMIP5) and are being analyzed by the broad community of scientists. Additionally, the model source code and associated documentation are freely available to the scientific community to use for Earth system studies, making it a true community tool. This article describes this Earth system model and its various possible configurations, and highlights a number of its scientific capabilities.

Full access
Michael A. Rawlins
,
Michael Steele
,
Marika M. Holland
,
Jennifer C. Adam
,
Jessica E. Cherry
,
Jennifer A. Francis
,
Pavel Ya Groisman
,
Larry D. Hinzman
,
Thomas G. Huntington
,
Douglas L. Kane
,
John S. Kimball
,
Ron Kwok
,
Richard B. Lammers
,
Craig M. Lee
,
Dennis P. Lettenmaier
,
Kyle C. McDonald
,
Erika Podest
,
Jonathan W. Pundsack
,
Bert Rudels
,
Mark C. Serreze
,
Alexander Shiklomanov
,
Øystein Skagseth
,
Tara J. Troy
,
Charles J. Vörösmarty
,
Mark Wensnahan
,
Eric F. Wood
,
Rebecca Woodgate
,
Daqing Yang
,
Ke Zhang
, and
Tingjun Zhang

Abstract

Hydrologic cycle intensification is an expected manifestation of a warming climate. Although positive trends in several global average quantities have been reported, no previous studies have documented broad intensification across elements of the Arctic freshwater cycle (FWC). In this study, the authors examine the character and quantitative significance of changes in annual precipitation, evapotranspiration, and river discharge across the terrestrial pan-Arctic over the past several decades from observations and a suite of coupled general circulation models (GCMs). Trends in freshwater flux and storage derived from observations across the Arctic Ocean and surrounding seas are also described.

With few exceptions, precipitation, evapotranspiration, and river discharge fluxes from observations and the GCMs exhibit positive trends. Significant positive trends above the 90% confidence level, however, are not present for all of the observations. Greater confidence in the GCM trends arises through lower interannual variability relative to trend magnitude. Put another way, intrinsic variability in the observations tends to limit confidence in trend robustness. Ocean fluxes are less certain, primarily because of the lack of long-term observations. Where available, salinity and volume flux data suggest some decrease in saltwater inflow to the Barents Sea (i.e., a decrease in freshwater outflow) in recent decades. A decline in freshwater storage across the central Arctic Ocean and suggestions that large-scale circulation plays a dominant role in freshwater trends raise questions as to whether Arctic Ocean freshwater flows are intensifying. Although oceanic fluxes of freshwater are highly variable and consistent trends are difficult to verify, the other components of the Arctic FWC do show consistent positive trends over recent decades. The broad-scale increases provide evidence that the Arctic FWC is experiencing intensification. Efforts that aim to develop an adequate observation system are needed to reduce uncertainties and to detect and document ongoing changes in all system components for further evidence of Arctic FWC intensification.

Full access