Search Results

You are looking at 11 - 20 of 24 items for

  • Author or Editor: G. Vaughan x
  • Refine by Access: All Content x
Clear All Modify Search
David G. Vaughan
,
Jonathan L. Bamber
,
Mario Giovinetto
,
Jonathan Russell
, and
A. Paul R. Cooper

Abstract

Recent in situ measurements of surface mass balance and improved calculation techniques are used to produce an updated assessment of net surface mass balance over Antarctica. A new elevation model of Antarctica derived from ERS-1 satellite altimetry supplemented with conventional data was used to delineate the ice flow drainage basins across Antarctica. The areas of these basins were calculated using the recent digital descriptions of coastlines and grounding lines. The delineation of drainage basins was achieved using an automatic procedure, which gave similar results to earlier hand-drawn catchment basins. More than 1800 published and unpublished in situ measurements of net surface mass balance from Antarctica were collated and then interpolated. A net surface mass balance map was derived from passive microwave satellite data, being employed as a forcing field to control the interpolation of the sparse in situ observations. Basinwide integrals of net surface mass balance were calculated using tools available within a geographic information system. It is found that the integrated net surface mass balance over the conterminous grounded ice sheet is 1811 Gton yr−1 (149 kg m−2 yr−1), and over the entire continent (including ice shelves and their embedded ice rises) it is 2288 Gton yr−1 (166 kg m−2 yr−1). These values are around 18% and 7% higher than the estimates widely adopted at present. The uncertainty in these values is hard to estimate from the methodology alone, but the progression of estimates from early studies to the present suggests that around ±5% uncertainty remains in the overall values. The results serve to confirm the great uncertainty in the overall contribution of the Antarctic Ice Sheet to recent and future global sea level rise even without a substantial collapse of the West Antarctic Ice Sheet.

Full access

Diabatic Heating and Cooling Rates Derived from In Situ Microphysics Measurements: A Case Study of a Wintertime U.K. Cold Front

C. Dearden
,
P. J. Connolly
,
G. Lloyd
,
J. Crosier
,
K. N. Bower
,
T. W. Choularton
, and
G. Vaughan

Abstract

In situ measurements associated with the passage of a kata cold front over the United Kingdom on 29 November 2011 are used to initialize a Lagrangian parcel model for the purpose of calculating rates of diabatic heating and cooling associated with the phase changes of water within the cloud system. The parcel model calculations are performed with both bin-resolved and bulk treatments of microphysical processes. The in situ data from this case study reveal droplet number concentrations up to 100 cm−3, with planar ice crystals detected at cloud top, as well as columnar crystals produced by rime splinter ejection within the prefrontal warm sector. The results show that in terms of magnitude, the most significant rates of diabatic heating and cooling are produced by condensation growth of liquid water within the convective updrafts at the leading edge of the front. The peak temperature tendencies associated with condensation are typically found to be at least an order of magnitude larger than those associated with the ice phase, although the cooling effect from sublimation and melting occurs over a wide region. The parcel model framework is used in conjunction with the observations to assess the suitability of existing bulk microphysical treatments, of the kind used in operational weather forecast models. It is found that the assumption of spherical ice crystals (with diameters equal to the maximum dimension of those sampled), along with the use of negative exponential functions to describe ice particle size distributions, can lead to an overestimation of local diabatic heating and cooling rates by a factor of 2 or more.

Open access
Peter T. May
,
James H. Mather
,
Geraint Vaughan
,
Keith N. Bower
,
Christian Jakob
,
Greg M. McFarquhar
, and
Gerald G. Mace
Full access
Peter T. May
,
James H. Mather
,
Geraint Vaughan
,
Christian Jakob
,
Greg M. McFarquhar
,
Keith N. Bower
, and
Gerald G. Mace

A comprehensive dataset describing tropical cloud systems and their environmental setting and impacts has been collected during the Tropical Warm Pool International Cloud Experiment (TWPICE) and Aerosol and Chemical Transport in Tropical Convection (ACTIVE) campaign in the area around Darwin, Northern Australia, in January and February 2006. The aim of the experiment was to observe the evolution of tropical cloud systems and their interaction with the environment within an observational framework optimized for a range of modeling activities with the goal of improving the representation of cloud and aerosol process in a range of models. The experiment design utilized permanent observational facilities in Darwin, including a polarimetric weather radar and a suite of cloud remote-sensing instruments. This was augmented by a dense network of soundings, together with radiation, flux, lightning, and remote-sensing measurements, as well as oceanographic observations. A fleet of five research aircraft, including two high-altitude aircraft, were taking measurements of fluxes, cloud microphysics, and chemistry; cloud radar and lidar were carried on a third aircraft. Highlights of the experiment include an intense mesoscale convective system (MCS) developed within the network, observations used to analyze the impacts of aerosol on convective systems, and observations used to relate cirrus properties to the parent storm properties.

Full access
G. Vaughan
,
C. Schiller
,
A. R. MacKenzie
,
K. Bower
,
T. Peter
,
H. Schlager
,
N. R. P. Harris
, and
P. T. May

During November and December 2005, two consortia of mainly European groups conducted an aircraft campaign in Darwin, Australia, to measure the composition of the tropical upper-troposphere and tropopause regions, between 12 and 20 km, in order to investigate the transport and transformation in deep convection of water vapor, aerosols, and trace chemicals. The campaign used two high-altitude aircraft—the Russian M55 Geophysica and the Australian Grob 520 Egrett, which can reach 20 and 15 km, respectively—complemented by upward-pointing lidar measurements from the DLR Falcon and low-level aerosol and chemical measurements from the U.K. Dornier-228. The meteorology during the campaign was characterized mainly by premonsoon conditions—isolated afternoon thunderstorms with more organized convective systems in the evening and overnight. At the beginning of November pronounced pollution resulting from widespread biomass burning was measured by the Dornier, giving way gradually to cleaner conditions by December, thus affording the opportunity to study the influence of aerosols on convection. The Egrett was used mainly to sample in and around the outflow from isolated thunderstorms, with a couple of survey missions near the end. The Geophysica–Falcon pair spent about 40% of their flight hours on survey legs, prioritizing remote sensing of water vapor, cirrus, and trace gases, and the remainder on close encounters with storm systems, prioritizing in situ measurements. Two joint missions with all four aircraft were conducted: on 16 November, during the polluted period, sampling a detached anvil from a single-cell storm, and on 30 November, around a much larger multicellular storm.

Full access
F. R. Robertson
,
G. S. Wilson
,
H. J. Christian Jr.
,
S. J. Goodman
,
G. H. Fichtl
, and
W. W. Vaughan

The present lack of a lower atmosphere research satellite program for the 1980s has prompted consideration of the Space Shuttle/Spacelab system as a means of flying sensor complements geared toward specific research problems, as well as continued instrument development. Three specific examples of possible science questions related to precipitation are discussed: 1) spatial structure of mesoscale cloud and precipitation systems, 2) lightning and storm development, and 3) cyclone intensification over oceanic regions. Examples of space sensors available to provide measurements needed in addressing these questions are also presented. Distinctive aspects of low-earth orbit experiments would be high resolution, multispectral sensing of atmospheric phenomena by complements of instruments, and more efficient sensor development through reflights of specific hardware packages.

Full access
Vaughan T. J. Phillips
,
Jun-Ichi Yano
,
Marco Formenton
,
Eyal Ilotoviz
,
Vijay Kanawade
,
Innocent Kudzotsa
,
Jiming Sun
,
Aaron Bansemer
,
Andrew G. Detwiler
,
Alexander Khain
, and
Sarah A. Tessendorf

Abstract

In Part I of this two-part paper, a formulation was developed to treat fragmentation in ice–ice collisions. In the present Part II, the formulation is implemented in two microphysically advanced cloud models simulating a convective line observed over the U.S. high plains. One model is 2D with a spectral bin microphysics scheme. The other has a hybrid bin–two-moment bulk microphysics scheme in 3D. The case consists of cumulonimbus cells with cold cloud bases (near 0°C) in a dry troposphere.

Only with breakup included in the simulation are aircraft observations of particles with maximum dimensions >0.2 mm in the storm adequately predicted by both models. In fact, breakup in ice–ice collisions is by far the most prolific process of ice initiation in the simulated clouds (95%–98% of all nonhomogeneous ice), apart from homogeneous freezing of droplets. Inclusion of breakup in the cloud-resolving model (CRM) simulations increased, by between about one and two orders of magnitude, the average concentration of ice between about 0° and −30°C. Most of the breakup is due to collisions of snow with graupel/hail. It is broadly consistent with the theoretical result in Part I about an explosive tendency for ice multiplication.

Breakup in collisions of snow (crystals >~1 mm and aggregates) with denser graupel/hail was the main pathway for collisional breakup and initiated about 60%–90% of all ice particles not from homogeneous freezing, in the simulations by both models. Breakup is predicted to reduce accumulated surface precipitation in the simulated storm by about 20%–40%.

Full access
Sachin Patade
,
Vaughan T. J. Phillips
,
Pierre Amato
,
Heinz G. Bingemer
,
Susannah M. Burrows
,
Paul J. DeMott
,
Fabio L. T. Goncalves
,
Daniel A. Knopf
,
Cindy E. Morris
,
Carl Alwmark
,
Paulo Artaxo
,
Christopher Pöhlker
,
Jann Schrod
, and
Bettina Weber

Abstract

To resolve the various types of biological ice nuclei (IN) with atmospheric models, an extension of the empirical parameterization (EP) is proposed to predict the active IN from multiple groups of primary biological aerosol particles (PBAPs). Our approach is to utilize coincident observations of PBAP sizes, concentrations, biological composition, and ice nucleating ability. The parameterization organizes PBAPs into five basic groups: 1) fungal spores, 2) bacteria, 3) pollen, 4) viral particles, plant/animal detritus, 5) algae, and their respective fragments. This new biological component of the EP was constructed by fitting predicted concentrations of PBAP IN to those observed at the Amazon Tall Tower Observatory (ATTO) site located in the central Amazon. The fitting parameters for pollen and viral particles and plant/animal detritus, which are much less active as IN than fungal and bacterial groups, are constrained based on their ice nucleation activity from the literature. The parameterization has empirically derived dependencies on the surface area of each group (except algae), and the effects of variability in their mean sizes and number concentrations are represented via their influences on surface area. The concentration of active algal IN is estimated from literature-based measurements. Predictions of this new biological component of the EP are consistent with previous laboratory and field observations not used in its construction. The EP scheme was implemented in a 0D parcel model. It confirms that biological IN account for most of the total IN activation at temperatures warmer than −20°C and at colder temperatures dust and soot become increasingly more important to ice nucleation.

Free access
Vaughan T. J. Phillips
,
Marco Formenton
,
Vijay P. Kanawade
,
Linus R. Karlsson
,
Sachin Patade
,
Jiming Sun
,
Christelle Barthe
,
Jean-Pierre Pinty
,
Andrew G. Detwiler
,
Weitao Lyu
, and
Sarah A. Tessendorf

Abstract

In this two-part paper, influences from environmental factors on lightning in a convective storm are assessed with a model. In Part I, an electrical component is described and applied in the Aerosol–Cloud model (AC). AC treats many types of secondary (e.g., breakup in ice–ice collisions, raindrop-freezing fragmentation, rime splintering) and primary (heterogeneous, homogeneous freezing) ice initiation. AC represents lightning flashes with a statistical treatment of branching from a fractal law constrained by video imagery.

The storm simulated is from the Severe Thunderstorm Electrification and Precipitation Study (STEPS; 19/20 June 2000). The simulation was validated microphysically [e.g., ice/droplet concentrations and mean sizes, liquid water content (LWC), reflectivity, surface precipitation] and dynamically (e.g., ascent) in our 2017 paper. Predicted ice concentrations (~10 L−1) agreed—to within a factor of about 2—with aircraft data at flight levels (−10° to −15°C). Here, electrical statistics of the same simulation are compared with observations. Flash rates (to within a factor of 2), triggering altitudes and polarity of flashes, and electric fields, all agree with the coincident STEPS observations.

The “normal” tripole of charge structure observed during an electrical balloon sounding is reproduced by AC. It is related to reversal of polarity of noninductive charging in ice–ice collisions seen in laboratory experiments when temperature or LWC are varied. Positively charged graupel and negatively charged snow at most midlevels, charged away from the fastest updrafts, is predicted to cause the normal tripole. Total charge separated in the simulated storm is dominated by collisions involving secondary ice from fragmentation in graupel–snow collisions.

Free access
N. R. P. Harris
,
L. J. Carpenter
,
J. D. Lee
,
G. Vaughan
,
M. T. Filus
,
R. L. Jones
,
B. OuYang
,
J. A. Pyle
,
A. D. Robinson
,
S. J. Andrews
,
A. C. Lewis
,
J. Minaeian
,
A. Vaughan
,
J. R. Dorsey
,
M. W. Gallagher
,
M. Le Breton
,
R. Newton
,
C. J. Percival
,
H. M. A. Ricketts
,
S. J.-B. Bauguitte
,
G. J. Nott
,
A. Wellpott
,
M. J. Ashfold
,
J. Flemming
,
R. Butler
,
P. I. Palmer
,
P. H. Kaye
,
C. Stopford
,
C. Chemel
,
H. Boesch
,
N. Humpage
,
A. Vick
,
A. R. MacKenzie
,
R. Hyde
,
P. Angelov
,
E. Meneguz
, and
A. J. Manning

Abstract

The main field activities of the Coordinated Airborne Studies in the Tropics (CAST) campaign took place in the west Pacific during January–February 2014. The field campaign was based in Guam (13.5°N, 144.8°E), using the U.K. Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 atmospheric research aircraft, and was coordinated with the Airborne Tropical Tropopause Experiment (ATTREX) project with an unmanned Global Hawk and the Convective Transport of Active Species in the Tropics (CONTRAST) campaign with a Gulfstream V aircraft. Together, the three aircraft were able to make detailed measurements of atmospheric structure and composition from the ocean surface to 20 km. These measurements are providing new information about the processes influencing halogen and ozone levels in the tropical west Pacific, as well as the importance of trace-gas transport in convection for the upper troposphere and stratosphere. The FAAM aircraft made a total of 25 flights in the region between 1°S and 14°N and 130° and 155°E. It was used to sample at altitudes below 8 km, with much of the time spent in the marine boundary layer. It measured a range of chemical species and sampled extensively within the region of main inflow into the strong west Pacific convection. The CAST team also made ground-based measurements of a number of species (including daily ozonesondes) at the Atmospheric Radiation Measurement Program site on Manus Island, Papua New Guinea (2.1°S, 147.4°E). This article presents an overview of the CAST project, focusing on the design and operation of the west Pacific experiment. It additionally discusses some new developments in CAST, including flights of new instruments on board the Global Hawk in February–March 2015.

Open access