Search Results

You are looking at 11 - 20 of 20 items for

  • Author or Editor: G. W. ROBERTSON x
  • Refine by Access: All Content x
Clear All Modify Search
Naohisa Koide
,
Andrew W. Robertson
,
Amor V. M. Ines
,
Jian-Hua Qian
,
David G. DeWitt
, and
Anthony Lucero

Abstract

Predictive skills of retrospective seasonal climate forecasts (hindcasts) tailored to Philippine rice production data at national, regional, and provincial levels are investigated using precipitation hindcasts from one uncoupled general circulation model (GCM) and two coupled GCMs, as well as using antecedent observations of tropical Pacific sea surface temperatures, warm water volumes (WWV), and zonal winds (ZW). Contrasting cross-validated predictive skills are found between the “dry” January–June and “rainy” July–December crop-production seasons. For the dry season, both irrigated and rain-fed rice production are shown to depend strongly on rainfall in the previous October–December. Furthermore, rice-crop hindcasts based on the two coupled GCMs, or on the observed WWV and ZW, are each able to account for more than half of the total variance of the dry-season national detrended rice production with about a 6-month lead time prior to the beginning of the harvest season. At regional and provincial levels, predictive skills are generally low. The relationships are found to be more complex for rainy-season rice production. Area harvested correlates positively with rainfall during the preceding dry season, whereas the yield has positive and negative correlations with rainfall in June–September and in October–December of the harvested year, respectively. Tropical cyclone activity is also shown to be a contributing factor in the latter 3-month season. Hindcasts based on the WWV and ZW are able to account for almost half of the variance of the detrended rice production data in Luzon with a few months’ lead time prior to the beginning of the rainy season.

Full access
M. Rodell
,
H. K. Beaudoing
,
T. S. L’Ecuyer
,
W. S. Olson
,
J. S. Famiglietti
,
P. R. Houser
,
R. Adler
,
M. G. Bosilovich
,
C. A. Clayson
,
D. Chambers
,
E. Clark
,
E. J. Fetzer
,
X. Gao
,
G. Gu
,
K. Hilburn
,
G. J. Huffman
,
D. P. Lettenmaier
,
W. T. Liu
,
F. R. Robertson
,
C. A. Schlosser
,
J. Sheffield
, and
E. F. Wood

Abstract

This study quantifies mean annual and monthly fluxes of Earth’s water cycle over continents and ocean basins during the first decade of the millennium. To the extent possible, the flux estimates are based on satellite measurements first and data-integrating models second. A careful accounting of uncertainty in the estimates is included. It is applied within a routine that enforces multiple water and energy budget constraints simultaneously in a variational framework in order to produce objectively determined optimized flux estimates. In the majority of cases, the observed annual surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are negligible. Fluxes were poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian islands, leading to reliance on atmospheric analysis estimates. Many of the satellite systems that contributed data have been or will soon be lost or replaced. Models that integrate ground-based and remote observations will be critical for ameliorating gaps and discontinuities in the data records caused by these transitions. Continued development of such models is essential for maximizing the value of the observations. Next-generation observing systems are the best hope for significantly improving global water budget accounting.

Full access
Tristan S. L’Ecuyer
,
H. K. Beaudoing
,
M. Rodell
,
W. Olson
,
B. Lin
,
S. Kato
,
C. A. Clayson
,
E. Wood
,
J. Sheffield
,
R. Adler
,
G. Huffman
,
M. Bosilovich
,
G. Gu
,
F. Robertson
,
P. R. Houser
,
D. Chambers
,
J. S. Famiglietti
,
E. Fetzer
,
W. T. Liu
,
X. Gao
,
C. A. Schlosser
,
E. Clark
,
D. P. Lettenmaier
, and
K. Hilburn

Abstract

New objectively balanced observation-based reconstructions of global and continental energy budgets and their seasonal variability are presented that span the golden decade of Earth-observing satellites at the start of the twenty-first century. In the absence of balance constraints, various combinations of modern flux datasets reveal that current estimates of net radiation into Earth’s surface exceed corresponding turbulent heat fluxes by 13–24 W m−2. The largest imbalances occur over oceanic regions where the component algorithms operate independent of closure constraints. Recent uncertainty assessments suggest that these imbalances fall within anticipated error bounds for each dataset, but the systematic nature of required adjustments across different regions confirm the existence of biases in the component fluxes. To reintroduce energy and water cycle closure information lost in the development of independent flux datasets, a variational method is introduced that explicitly accounts for the relative accuracies in all component fluxes. Applying the technique to a 10-yr record of satellite observations yields new energy budget estimates that simultaneously satisfy all energy and water cycle balance constraints. Globally, 180 W m−2 of atmospheric longwave cooling is balanced by 74 W m−2 of shortwave absorption and 106 W m−2 of latent and sensible heat release. At the surface, 106 W m−2 of downwelling radiation is balanced by turbulent heat transfer to within a residual heat flux into the oceans of 0.45 W m−2, consistent with recent observations of changes in ocean heat content. Annual mean energy budgets and their seasonal cycles for each of seven continents and nine ocean basins are also presented.

Full access
C.R. Mechoso
,
A.W. Robertson
,
N. Barth
,
M.K. Davey
,
P. Delecluse
,
P.R. Gent
,
S. Ineson
,
B. Kirtman
,
M. Latif
,
H. Le Treut
,
T. Nagai
,
J.D. Neelin
,
S.G.H. Philander
,
J. Polcher
,
P.S. Schopf
,
T. Stockdale
,
M.J. Suarez
,
L. Terray
,
O. Thual
, and
J.J. Tribbia

Abstract

The seasonal cycle over the tropical Pacific simulated by 11 coupled ocean–atmosphere general circulation models (GCMs) is examined. Each model consists of a high-resolution ocean GCM of either the tropical Pacific or near-global means coupled to a moderate- or high-resolution atmospheric GCM, without the use of flux correction. The seasonal behavior of sea surface temperature (SST) and eastern Pacific rainfall is presented for each model.

The results show that current state-of-the-art coupled GCMs share important successes and troublesome systematic errors. All 11 models are able to simulate the mean zonal gradient in SST at the equator over the central Pacific. The simulated equatorial cold tongue generally tends to be too strong, too narrow, and extend too far west. SSTs are generally too warm in a broad region west of Peru and in a band near 10°S. This is accompanied in some models by a double intertropical convergence zone (ITCZ) straddling the equator over the eastern Pacific, and in others by an ITCZ that migrates across the equator with the seasons; neither behavior is realistic. There is considerable spread in the simulated seasonal cycles of equatorial SST in the eastern Pacific. Some simulations do capture the annual harmonic quite realistically, although the seasonal cold tongue tends to appear prematurely. Others overestimate the amplitude of the semiannual harmonic. Nonetheless, the results constitute a marked improvement over the simulations of only a few years ago when serious climate drift was still widespread and simulated zonal gradients of SST along the equator were often very weak.

Full access
Christopher J. White
,
Daniela I. V. Domeisen
,
Nachiketa Acharya
,
Elijah A. Adefisan
,
Michael L. Anderson
,
Stella Aura
,
Ahmed A. Balogun
,
Douglas Bertram
,
Sonia Bluhm
,
David J. Brayshaw
,
Jethro Browell
,
Dominik Büeler
,
Andrew Charlton-Perez
,
Xandre Chourio
,
Isadora Christel
,
Caio A. S. Coelho
,
Michael J. DeFlorio
,
Luca Delle Monache
,
Francesca Di Giuseppe
,
Ana María García-Solórzano
,
Peter B. Gibson
,
Lisa Goddard
,
Carmen González Romero
,
Richard J. Graham
,
Robert M. Graham
,
Christian M. Grams
,
Alan Halford
,
W. T. Katty Huang
,
Kjeld Jensen
,
Mary Kilavi
,
Kamoru A. Lawal
,
Robert W. Lee
,
David MacLeod
,
Andrea Manrique-Suñén
,
Eduardo S. P. R. Martins
,
Carolyn J. Maxwell
,
William J. Merryfield
,
Ángel G. Muñoz
,
Eniola Olaniyan
,
George Otieno
,
John A. Oyedepo
,
Lluís Palma
,
Ilias G. Pechlivanidis
,
Diego Pons
,
F. Martin Ralph
,
Dirceu S. Reis Jr.
,
Tomas A. Remenyi
,
James S. Risbey
,
Donald J. C. Robertson
,
Andrew W. Robertson
,
Stefan Smith
,
Albert Soret
,
Ting Sun
,
Martin C. Todd
,
Carly R. Tozer
,
Francisco C. Vasconcelos Jr.
,
Ilaria Vigo
,
Duane E. Waliser
,
Fredrik Wetterhall
, and
Robert G. Wilson

Abstract

The subseasonal-to-seasonal (S2S) predictive time scale, encompassing lead times ranging from 2 weeks to a season, is at the frontier of forecasting science. Forecasts on this time scale provide opportunities for enhanced application-focused capabilities to complement existing weather and climate services and products. There is, however, a “knowledge–value” gap, where a lack of evidence and awareness of the potential socioeconomic benefits of S2S forecasts limits their wider uptake. To address this gap, here we present the first global community effort at summarizing relevant applications of S2S forecasts to guide further decision-making and support the continued development of S2S forecasts and related services. Focusing on 12 sectoral case studies spanning public health, agriculture, water resource management, renewable energy and utilities, and emergency management and response, we draw on recent advancements to explore their application and utility. These case studies mark a significant step forward in moving from potential to actual S2S forecasting applications. We show that by placing user needs at the forefront of S2S forecast development—demonstrating both skill and utility across sectors—this dialogue can be used to help promote and accelerate the awareness, value, and cogeneration of S2S forecasts. We also highlight that while S2S forecasts are increasingly gaining interest among users, incorporating probabilistic S2S forecasts into existing decision-making operations is not trivial. Nevertheless, S2S forecasting represents a significant opportunity to generate useful, usable, and actionable forecast applications for and with users that will increasingly unlock the potential of this forecasting time scale.

Full access
Kathy Pegion
,
Ben P. Kirtman
,
Emily Becker
,
Dan C. Collins
,
Emerson LaJoie
,
Robert Burgman
,
Ray Bell
,
Timothy DelSole
,
Dughong Min
,
Yuejian Zhu
,
Wei Li
,
Eric Sinsky
,
Hong Guan
,
Jon Gottschalck
,
E. Joseph Metzger
,
Neil P Barton
,
Deepthi Achuthavarier
,
Jelena Marshak
,
Randal D. Koster
,
Hai Lin
,
Normand Gagnon
,
Michael Bell
,
Michael K. Tippett
,
Andrew W. Robertson
,
Shan Sun
,
Stanley G. Benjamin
,
Benjamin W. Green
,
Rainer Bleck
, and
Hyemi Kim

Abstract

The Subseasonal Experiment (SubX) is a multimodel subseasonal prediction experiment designed around operational requirements with the goal of improving subseasonal forecasts. Seven global models have produced 17 years of retrospective (re)forecasts and more than a year of weekly real-time forecasts. The reforecasts and forecasts are archived at the Data Library of the International Research Institute for Climate and Society, Columbia University, providing a comprehensive database for research on subseasonal to seasonal predictability and predictions. The SubX models show skill for temperature and precipitation 3 weeks ahead of time in specific regions. The SubX multimodel ensemble mean is more skillful than any individual model overall. Skill in simulating the Madden–Julian oscillation (MJO) and the North Atlantic Oscillation (NAO), two sources of subseasonal predictability, is also evaluated, with skillful predictions of the MJO 4 weeks in advance and of the NAO 2 weeks in advance. SubX is also able to make useful contributions to operational forecast guidance at the Climate Prediction Center. Additionally, SubX provides information on the potential for extreme precipitation associated with tropical cyclones, which can help emergency management and aid organizations to plan for disasters.

Free access
Michael J. DeFlorio
,
Agniv Sengupta
,
Christopher M. Castellano
,
Jiabao Wang
,
Zhenhai Zhang
,
Alexander Gershunov
,
Kristen Guirguis
,
Rosa Luna Niño
,
Rachel E. S. Clemesha
,
Ming Pan
,
Mu Xiao
,
Brian Kawzenuk
,
Peter B. Gibson
,
William Scheftic
,
Patrick D. Broxton
,
Matthew B. Switanek
,
Jing Yuan
,
Michael D. Dettinger
,
Chad W. Hecht
,
Daniel R. Cayan
,
Bruce D. Cornuelle
,
Arthur J. Miller
,
Julie Kalansky
,
Luca Delle Monache
,
F. Martin Ralph
,
Duane E. Waliser
,
Andrew W. Robertson
,
Xubin Zeng
,
David G. DeWitt
,
Jeanine Jones
, and
Michael L. Anderson

Abstract

California experienced a historic run of nine consecutive landfalling atmospheric rivers (ARs) in three weeks’ time during winter 2022/23. Following three years of drought from 2020 to 2022, intense landfalling ARs across California in December 2022–January 2023 were responsible for bringing reservoirs back to historical averages and producing damaging floods and debris flows. In recent years, the Center for Western Weather and Water Extremes and collaborating institutions have developed and routinely provided to end users peer-reviewed experimental seasonal (1–6 month lead time) and subseasonal (2–6 week lead time) prediction tools for western U.S. ARs, circulation regimes, and precipitation. Here, we evaluate the performance of experimental seasonal precipitation forecasts for winter 2022/23, along with experimental subseasonal AR activity and circulation forecasts during the December 2022 regime shift from dry conditions to persistent troughing and record AR-driven wetness over the western United States. Experimental seasonal precipitation forecasts were too dry across Southern California (likely due to their overreliance on La Niña), and the observed above-normal precipitation across Northern and Central California was underpredicted. However, experimental subseasonal forecasts skillfully captured the regime shift from dry to wet conditions in late December 2022 at 2–3 week lead time. During this time, an active MJO shift from phases 4 and 5 to 6 and 7 occurred, which historically tilts the odds toward increased AR activity over California. New experimental seasonal and subseasonal synthesis forecast products, designed to aggregate information across institutions and methods, are introduced in the context of this historic winter to provide situational awareness guidance to western U.S. water managers.

Open access
F. Vitart
,
C. Ardilouze
,
A. Bonet
,
A. Brookshaw
,
M. Chen
,
C. Codorean
,
M. Déqué
,
L. Ferranti
,
E. Fucile
,
M. Fuentes
,
H. Hendon
,
J. Hodgson
,
H.-S. Kang
,
A. Kumar
,
H. Lin
,
G. Liu
,
X. Liu
,
P. Malguzzi
,
I. Mallas
,
M. Manoussakis
,
D. Mastrangelo
,
C. MacLachlan
,
P. McLean
,
A. Minami
,
R. Mladek
,
T. Nakazawa
,
S. Najm
,
Y. Nie
,
M. Rixen
,
A. W. Robertson
,
P. Ruti
,
C. Sun
,
Y. Takaya
,
M. Tolstykh
,
F. Venuti
,
D. Waliser
,
S. Woolnough
,
T. Wu
,
D.-J. Won
,
H. Xiao
,
R. Zaripov
, and
L. Zhang

Abstract

Demands are growing rapidly in the operational prediction and applications communities for forecasts that fill the gap between medium-range weather and long-range or seasonal forecasts. Based on the potential for improved forecast skill at the subseasonal to seasonal time range, the Subseasonal to Seasonal (S2S) Prediction research project has been established by the World Weather Research Programme/World Climate Research Programme. A main deliverable of this project is the establishment of an extensive database containing subseasonal (up to 60 days) forecasts, 3 weeks behind real time, and reforecasts from 11 operational centers, modeled in part on the The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) database for medium-range forecasts (up to 15 days).

The S2S database, available to the research community since May 2015, represents an important tool to advance our understanding of the subseasonal to seasonal time range that has been considered for a long time as a “desert of predictability.” In particular, this database will help identify common successes and shortcomings in the model simulation and prediction of sources of subseasonal to seasonal predictability. For instance, a preliminary study suggests that the S2S models significantly underestimate the amplitude of the Madden–Julian oscillation (MJO) teleconnections over the Euro-Atlantic sector. The S2S database also represents an important tool for case studies of extreme events. For instance, a multimodel combination of S2S models displays higher probability of a landfall over the islands of Vanuatu 2–3 weeks before Tropical Cyclone Pam devastated the islands in March 2015.

Full access
William J. Merryfield
,
Johanna Baehr
,
Lauriane Batté
,
Emily J. Becker
,
Amy H. Butler
,
Caio A. S. Coelho
,
Gokhan Danabasoglu
,
Paul A. Dirmeyer
,
Francisco J. Doblas-Reyes
,
Daniela I. V. Domeisen
,
Laura Ferranti
,
Tatiana Ilynia
,
Arun Kumar
,
Wolfgang A. Müller
,
Michel Rixen
,
Andrew W. Robertson
,
Doug M. Smith
,
Yuhei Takaya
,
Matthias Tuma
,
Frederic Vitart
,
Christopher J. White
,
Mariano S. Alvarez
,
Constantin Ardilouze
,
Hannah Attard
,
Cory Baggett
,
Magdalena A. Balmaseda
,
Asmerom F. Beraki
,
Partha S. Bhattacharjee
,
Roberto Bilbao
,
Felipe M. de Andrade
,
Michael J. DeFlorio
,
Leandro B. Díaz
,
Muhammad Azhar Ehsan
,
Georgios Fragkoulidis
,
Sam Grainger
,
Benjamin W. Green
,
Momme C. Hell
,
Johnna M. Infanti
,
Katharina Isensee
,
Takahito Kataoka
,
Ben P. Kirtman
,
Nicholas P. Klingaman
,
June-Yi Lee
,
Kirsten Mayer
,
Roseanna McKay
,
Jennifer V. Mecking
,
Douglas E. Miller
,
Nele Neddermann
,
Ching Ho Justin Ng
,
Albert Ossó
,
Klaus Pankatz
,
Simon Peatman
,
Kathy Pegion
,
Judith Perlwitz
,
G. Cristina Recalde-Coronel
,
Annika Reintges
,
Christoph Renkl
,
Balakrishnan Solaraju-Murali
,
Aaron Spring
,
Cristiana Stan
,
Y. Qiang Sun
,
Carly R. Tozer
,
Nicolas Vigaud
,
Steven Woolnough
, and
Stephen Yeager
Full access
William J. Merryfield
,
Johanna Baehr
,
Lauriane Batté
,
Emily J. Becker
,
Amy H. Butler
,
Caio A. S. Coelho
,
Gokhan Danabasoglu
,
Paul A. Dirmeyer
,
Francisco J. Doblas-Reyes
,
Daniela I. V. Domeisen
,
Laura Ferranti
,
Tatiana Ilynia
,
Arun Kumar
,
Wolfgang A. Müller
,
Michel Rixen
,
Andrew W. Robertson
,
Doug M. Smith
,
Yuhei Takaya
,
Matthias Tuma
,
Frederic Vitart
,
Christopher J. White
,
Mariano S. Alvarez
,
Constantin Ardilouze
,
Hannah Attard
,
Cory Baggett
,
Magdalena A. Balmaseda
,
Asmerom F. Beraki
,
Partha S. Bhattacharjee
,
Roberto Bilbao
,
Felipe M. de Andrade
,
Michael J. DeFlorio
,
Leandro B. Díaz
,
Muhammad Azhar Ehsan
,
Georgios Fragkoulidis
,
Alex O. Gonzalez
,
Sam Grainger
,
Benjamin W. Green
,
Momme C. Hell
,
Johnna M. Infanti
,
Katharina Isensee
,
Takahito Kataoka
,
Ben P. Kirtman
,
Nicholas P. Klingaman
,
June-Yi Lee
,
Kirsten Mayer
,
Roseanna McKay
,
Jennifer V. Mecking
,
Douglas E. Miller
,
Nele Neddermann
,
Ching Ho Justin Ng
,
Albert Ossó
,
Klaus Pankatz
,
Simon Peatman
,
Kathy Pegion
,
Judith Perlwitz
,
G. Cristina Recalde-Coronel
,
Annika Reintges
,
Christoph Renkl
,
Balakrishnan Solaraju-Murali
,
Aaron Spring
,
Cristiana Stan
,
Y. Qiang Sun
,
Carly R. Tozer
,
Nicolas Vigaud
,
Steven Woolnough
, and
Stephen Yeager

Abstract

Weather and climate variations on subseasonal to decadal time scales can have enormous social, economic, and environmental impacts, making skillful predictions on these time scales a valuable tool for decision-makers. As such, there is a growing interest in the scientific, operational, and applications communities in developing forecasts to improve our foreknowledge of extreme events. On subseasonal to seasonal (S2S) time scales, these include high-impact meteorological events such as tropical cyclones, extratropical storms, floods, droughts, and heat and cold waves. On seasonal to decadal (S2D) time scales, while the focus broadly remains similar (e.g., on precipitation, surface and upper-ocean temperatures, and their effects on the probabilities of high-impact meteorological events), understanding the roles of internal variability and externally forced variability such as anthropogenic warming in forecasts also becomes important. The S2S and S2D communities share common scientific and technical challenges. These include forecast initialization and ensemble generation; initialization shock and drift; understanding the onset of model systematic errors; bias correction, calibration, and forecast quality assessment; model resolution; atmosphere–ocean coupling; sources and expectations for predictability; and linking research, operational forecasting, and end-user needs. In September 2018 a coordinated pair of international conferences, framed by the above challenges, was organized jointly by the World Climate Research Programme (WCRP) and the World Weather Research Programme (WWRP). These conferences surveyed the state of S2S and S2D prediction, ongoing research, and future needs, providing an ideal basis for synthesizing current and emerging developments in these areas that promise to enhance future operational services. This article provides such a synthesis.

Free access