Search Results

You are looking at 11 - 14 of 14 items for

  • Author or Editor: Ge Peng x
  • Refine by Access: All Content x
Clear All Modify Search
Ziyu Yan, Xuyang Ge, Zhuo Wang, Chun-Chieh Wu, and Melinda Peng


Typhoon Jongdari (2018) had an unusual looping path before making landfall in Japan, which posed a forecasting challenge for operational numerical models. The impacts of an upper-tropospheric cold low (UTCL) on the track and intensity of Jongdari are investigated using numerical simulations. The storm track and intensity are well simulated in the control experiment using the GFS analysis as the initial and boundary conditions. In the sensitivity experiment (RCL), the UTCL is removed from the initial-condition fields using the piecewise potential vorticity inversion (PPVI), and both the track and intensity of Jongdari change substantially. The diagnosis of potential vorticity tendency suggests that horizontal advection is the primary contributor for storm motion. Flow decomposition using the PPVI further demonstrates that the steering flow is strongly affected by the UTCL, and the looping path of Jongdari results from the Fujiwhara interaction between the typhoon and UTCL. Jongdari first intensifies and then weakens in the control experiment, consistent with the observation. In contrast, it undergoes a gradual intensification in the RCL experiment. The UTCL contributes to the intensification of Jongdari at the early stage by enhancing the eddy flux convergence of angular momentum and reducing inertial stability, and it contributes to the storm weakening via enhanced vertical wind shear at the later stage when moving closer to Jongdari. Different sea surface temperatures and other environmental conditions along the different storm tracks also contribute to the intensity differences between the control and the RCL experiments, indicating the indirect impacts of the UTCL on the typhoon intensity.

Restricted access
Ge Peng, Huai-Min Zhang, Helmut P. Frank, Jean-Raymond Bidlot, Masakazu Higaki, Scott Stevens, and William R. Hankins


To facilitate evaluation and monitoring of numerical weather prediction model forecasts and satellite-based products against high-quality in situ observations, a data repository for collocated model forecasts, a satellite product, and in situ observations has been created under the support of various World Climate Research Program (WCRP) working groups. Daily measurements from 11 OceanSITES buoys are used as the reference dataset to evaluate five ocean surface wind products (three short-range forecasts, one reanalysis, and one satellite based) over a 1-yr intensive analysis period, using the WCRP community weather prediction model evaluation metrics. All five wind products correlate well with the buoy winds with correlations above 0.76 for all 11 buoy stations except the meridional wind at four stations, where the satellite and model performances are weakest in estimating the meridional wind (or wind direction). The reanalysis has higher cross-correlation coefficients (above 0.83) and smaller root-mean-square (RMS) errors than others. The satellite wind shows larger variability than that observed by buoys; contrarily, the models underestimate the variability. For the zonal and meridional winds, although the magnitude of biases averaged over all the stations are mostly <0.12 m s−1 for each product, the magnitude of biases at individual stations can be >1.2 m s−1, confirming the need for regional/site analysis when characterizing any wind product. On wind direction, systematic negative (positive) biases are found in the central (east central) Pacific Ocean. Wind speed and direction errors could induce erroneous ocean currents and states from ocean models driven by these products. The deficiencies revealed here are useful for product and model improvement.

Full access
James R. Campbell, Cui Ge, Jun Wang, Ellsworth J. Welton, Anthony Bucholtz, Edward J. Hyer, Elizabeth A. Reid, Boon Ning Chew, Soo-Chin Liew, Santo V. Salinas, Simone Lolli, Kathleen C. Kaku, Peng Lynch, Mastura Mahmud, Maznorizan Mohamad, and Brent N. Holben


This work describes some of the most extensive ground-based observations of the aerosol profile collected in Southeast Asia to date, highlighting the challenges in simulating these observations with a mesoscale perspective. An 84-h WRF Model coupled with chemistry (WRF-Chem) mesoscale simulation of smoke particle transport at Kuching, Malaysia, in the southern Maritime Continent of Southeast Asia is evaluated relative to a unique collection of continuous ground-based lidar, sun photometer, and 4-h radiosonde profiling. The period was marked by relatively dry conditions, allowing smoke layers transported to the site unperturbed by wet deposition to be common regionally. The model depiction is reasonable overall. Core thermodynamics, including land/sea-breeze structure, are well resolved. Total model smoke extinction and, by proxy, mass concentration are low relative to observation. Smoke emissions source products are likely low because of undersampling of fires in infrared sun-synchronous satellite products, which is exacerbated regionally by endemic low-level cloud cover. Differences are identified between the model mass profile and the lidar profile, particularly during periods of afternoon convective mixing. A static smoke mass injection height parameterized for this study potentially influences this result. The model does not resolve the convective mixing of aerosol particles into the lower free troposphere or the enhancement of near-surface extinction from nighttime cooling and hygroscopic effects.

Full access
Ping Zhao, Xiangde Xu, Fei Chen, Xueliang Guo, Xiangdong Zheng, Liping Liu, Yang Hong, Yueqing Li, Zuo La, Hao Peng, Linzhi Zhong, Yaoming Ma, Shihao Tang, Yimin Liu, Huizhi Liu, Yaohui Li, Qiang Zhang, Zeyong Hu, Jihua Sun, Shengjun Zhang, Lixin Dong, Hezhen Zhang, Yang Zhao, Xiaolu Yan, An Xiao, Wei Wan, Yu Liu, Junming Chen, Ge Liu, Yangzong Zhaxi, and Xiuji Zhou


This paper presents the background, scientific objectives, experimental design, and preliminary achievements of the Third Tibetan Plateau (TP) Atmospheric Scientific Experiment (TIPEX-III) for 8–10 years. It began in 2013 and has expanded plateau-scale observation networks by adding observation stations in data-scarce areas; executed integrated observation missions for the land surface, planetary boundary layer, cloud–precipitation, and troposphere–stratosphere exchange processes by coordinating ground-based, air-based, and satellite facilities; and achieved noticeable progress in data applications. A new estimation gives a smaller bulk transfer coefficient of surface sensible heat over the TP, which results in a reduction of the possibly overestimated heat intensity found in previous studies. Summer cloud–precipitation microphysical characteristics and cloud radiative effects over the TP are distinguished from those over the downstream plains. Warm rain processes play important roles in the development of cloud and precipitation over the TP. The lower-tropospheric ozone maximum over the northeastern TP is attributed to the regional photochemistry and long-range ozone transports, and the heterogeneous chemical processes of depleting ozone near the tropopause might not be a dominant mechanism for the summer upper-tropospheric–lower-stratospheric ozone valley over the southeastern TP. The TP thermodynamic function not only affects the local atmospheric water maintenance and the downstream precipitation and haze events but also modifies extratropical atmospheric teleconnections like the Asia–Pacific Oscillation, subtropical anticyclones over the North Pacific and Atlantic, and temperature and precipitation over Africa, Asia, and North America. These findings provide new insights into understanding land–atmosphere coupled processes over the TP and their effects, improving model parameterization schemes, and enhancing weather and climate forecast skills.

Open access