Search Results

You are looking at 11 - 20 of 26 items for

  • Author or Editor: Gerard H. Roe x
  • Refine by Access: All Content x
Clear All Modify Search
Justin R. Minder
,
Dale R. Durran
, and
Gerard H. Roe

Abstract

Observations show that on a mountainside the boundary between snow and rain, the snow line, is often located at an elevation hundreds of meters below its elevation in the free air upwind. The processes responsible for this mesoscale lowering of the snow line are examined in semi-idealized simulations with a mesoscale numerical model and in simpler theoretical models. Spatial variations in latent cooling from melting precipitation, in adiabatic cooling from vertical motion, and in the melting distance of frozen hydrometeors are all shown to make important contributions. The magnitude of the snow line drop, and the relative importance of the responsible processes, depends on properties of the incoming flow and terrain geometry. Results suggest that the depression of the snow line increases with increasing temperature, a relationship that, if present in nature, could act to buffer mountain hydroclimates against the impacts of climate warming. The simulated melting distance, and hence the snow line, depends substantially on the choice of microphysical parameterization, pointing to an important source of uncertainty in simulations of mountain snowfall.

Full access
Sandra Penny
,
Gerard H. Roe
, and
David S. Battisti

Abstract

Feature-tracking techniques are employed to investigate why there is a relative minimum in storminess during winter within the Pacific storm track (the midwinter suppression). It is found that the frequency and amplitude of disturbances entering the Pacific storm track from midlatitude Asia are substantially reduced during winter relative to fall and spring and that the magnitude of this reduction is more than sufficient to account for the midwinter supression. Growth rates of individual disturbances are calculated and compared to expectations from linear theory for several regions of interest. Although there are discrepancies between linear expectations and observed growth rates over the Pacific, the growth of disturbances within the Pacific storm track cannot explain why the midwinter suppression exists. Furthermore, it is determined that the development of a wintertime reduction in storminess over midlatitude Asia is consistent with linear expectations, which predict a wintertime minimum in Eady growth rates in this region, mainly because of increased static stability. Several other mechanisms that may contribute to the initiation of the midwinter suppression over midlatitude Asia are discussed, including the interaction between upper-level waves and topography, the behavior of waves upwind of the Tibetan Plateau, and the initiation of lee cyclones.

Full access
Kyle C. Armour
,
Cecilia M. Bitz
, and
Gerard H. Roe

Abstract

The sensitivity of global climate with respect to forcing is generally described in terms of the global climate feedback—the global radiative response per degree of global annual mean surface temperature change. While the global climate feedback is often assumed to be constant, its value—diagnosed from global climate models—shows substantial time variation under transient warming. Here a reformulation of the global climate feedback in terms of its contributions from regional climate feedbacks is proposed, providing a clear physical insight into this behavior. Using (i) a state-of-the-art global climate model and (ii) a low-order energy balance model, it is shown that the global climate feedback is fundamentally linked to the geographic pattern of regional climate feedbacks and the geographic pattern of surface warming at any given time. Time variation of the global climate feedback arises naturally when the pattern of surface warming evolves, actuating feedbacks of different strengths in different regions. This result has substantial implications for the ability to constrain future climate changes from observations of past and present climate states. The regional climate feedbacks formulation also reveals fundamental biases in a widely used method for diagnosing climate sensitivity, feedbacks, and radiative forcing—the regression of the global top-of-atmosphere radiation flux on global surface temperature. Further, it suggests a clear mechanism for the “efficacies” of both ocean heat uptake and radiative forcing.

Full access
Sandra M. Penny
,
David S. Battisti
, and
Gerard H. Roe

Abstract

This paper examines how variations in two mechanisms, upstream seeding and jet-core strength, relate to storminess within the cold season (October–April) Pacific storm track. It is found that about 17% of observed storminess covaries with the strength of the upstream wave source, and the relationship is robust throughout the cold season and for both the Pacific and Atlantic basins. Further analyses of the intraseasonal variability in the strength and structure of the wintertime [December–February (DJF)] Pacific jet stream draw upon both Eulerian-variance and feature-tracking statistics to diagnose why winter months with a strong-core jet stream have weaker storminess than those with a weak-core jet stream. Contrary to expectations, it is shown that the basic spatial patterns actually conform to a simple linear picture: regions with a weaker jet have weaker storminess. The overall decrease in storminess is most strongly linked to the weaker amplitude of individual storms in strong-core months. Previously proposed mechanisms are evaluated in the context of these new results. Last, this analysis provides further evidence that the midwinter suppression in storminess over the North Pacific Ocean is primarily due to a notable lack of storminess upstream of the Pacific storm track in the heart of winter.

Full access
Nicholas Siler
,
Gerard H. Roe
, and
Kyle C. Armour

Abstract

Recent studies have shown that the change in poleward energy transport under global warming is well approximated by downgradient transport of near-surface moist static energy (MSE) modulated by the spatial pattern of radiative forcing, feedbacks, and ocean heat uptake. Here we explore the implications of downgradient MSE transport for changes in the vertically integrated moisture flux and thus the zonal-mean pattern of evaporation minus precipitation (E − P). Using a conventional energy balance model that we have modified to represent the Hadley cell, we find that downgradient MSE transport implies changes in E − P that mirror those simulated by comprehensive global climate models (GCMs), including a poleward expansion of the subtropical belt where E > P, and a poleward shift in the extratropical minimum of E − P associated with the storm tracks. The surface energy budget imposes further constraints on E and P independently: E increases almost everywhere, with relatively little spatial variability, while P must increase in the deep tropics, decrease in the subtropics, and increase in middle and high latitudes. Variations in the spatial pattern of radiative forcing, feedbacks, and ocean heat uptake across GCMs modulate these basic features, accounting for much of the model spread in the zonal-mean response of E and P to climate change. Thus, the principle of downgradient energy transport appears to provide a simple explanation for the basic structure of hydrologic cycle changes in GCM simulations of global warming.

Full access
Kyle C. Armour
,
Nicholas Siler
,
Aaron Donohoe
, and
Gerard H. Roe

Abstract

Meridional atmospheric heat transport (AHT) has been investigated through three broad perspectives: a dynamic perspective, linking AHT to the poleward flux of moist static energy (MSE) by atmospheric motions; an energetic perspective, linking AHT to energy input to the atmosphere by top-of-atmosphere radiation and surface heat fluxes; and a diffusive perspective, representing AHT in terms downgradient energy transport. It is shown here that the three perspectives provide complementary diagnostics of meridional AHT and its changes under greenhouse gas forcing. When combined, the energetic and diffusive perspectives offer prognostic insights: anomalous AHT is constrained to satisfy the net energetic demands of radiative forcing, radiative feedbacks, and ocean heat uptake; in turn, the meridional pattern of warming must adjust to produce those AHT changes, and does so approximately according to diffusion of anomalous MSE. The relationship between temperature and MSE exerts strong constraints on the warming pattern, favoring polar amplification. These conclusions are supported by use of a diffusive moist energy balance model (EBM) that accurately predicts zonal-mean warming and AHT changes within comprehensive general circulation models (GCMs). A dry diffusive EBM predicts similar AHT changes in order to satisfy the same energetic constraints, but does so through tropically amplified warming—at odds with the GCMs’ polar-amplified warming pattern. The results suggest that polar-amplified warming is a near-inevitable consequence of a moist, diffusive atmosphere’s response to greenhouse gas forcing. In this view, atmospheric circulations must act to satisfy net AHT as constrained by energetics.

Full access
Xiaojuan Liu
,
David S. Battisti
, and
Gerard H. Roe

Abstract

The question “What determines the meridional heat transport (MHT)?” is explored by performing a series of rotation-rate experiments with an aquaplanet GCM coupled to a slab ocean. The change of meridional heat transport with rotation rate falls into two regimes: in a “slow rotating” regime (rotation rate < 1/2 modern rotation) MHT decreases with increasing rotation rate, whereas in a “fast rotating” regime (rotation rate ≥ 1/2 modern rotation) MHT is nearly invariant. The two-regime feature of MHT is primarily related to the reduction in tropical clouds and increase in tropical temperature that are associated with the narrowing and weakening of the Hadley cell with increasing rotation rate. In the slow-rotating regime, the Hadley cell contracts and weakens as rotation rate is increased; the resulting warming causes a local increase in outgoing longwave radiation (OLR), which consequently decreases MHT. In the fast-rotating regime, the Hadley cell continues to contract as rotation rate is increased, resulting in a decrease in tropical and subtropical clouds that increases the local absorbed shortwave radiation (ASR) by an amount that almost exactly compensates the local increases in OLR. In the fast-rotating regime, the model heat transport is approximately diffusive, with an effective eddy diffusivity that is consistent with eddy mixing-length theory. The effective eddy diffusivity decreases with increasing rotation rate. However, this decrease is nearly offset by a strong increase in the meridional gradient of moist static energy and hence results in a near-constancy of MHT. The results herein extend previous work on the MHT by highlighting that the spatial patterns of clouds and the factors that influence them are leading controls on MHT.

Full access
Alison M. Anders
,
Gerard H. Roe
,
Dale R. Durran
, and
Justin R. Minder

Abstract

Persistent, 10-km-scale gradients in climatological precipitation tied to topography are documented with a finescale rain and snow gauge network in the Matheny Ridge area of the Olympic Mountains of Washington State. Precipitation totals are 50% higher on top of an ∼800-m-high ridge relative to valleys on either side, 10 km distant. Operational fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) runs on a 4-km grid produce similar precipitation patterns with enhanced precipitation over high topography for 6 water years.

The performance of the MM5 is compared to the gauge data for 3 wet seasons and for 10 large precipitation events. The cumulative MM5 precipitation forecasts for all seasons and for the sum of all 10 large events compare well with the precipitation measured by the gauges, although some of the individual events are significantly over- or underforecast. This suggests that the MM5 is reproducing the precipitation climatology in the vicinity of the gauges, but that errors for individual events may arise due to inaccurate specification of the incident flow.

A computationally simple model of orographic precipitation is shown to reproduce the major features of the event precipitation pattern on the windward side of the range. This simple model can be coupled to landscape evolution models to examine the impact of long-term spatial variability in precipitation on the evolution of topography over thousands to millions of years.

Full access
James S. Risbey
,
Peter J. Lamb
,
Ron L. Miller
,
Michael C. Morgan
, and
Gerard H. Roe

Abstract

A set of regional climate scenarios is constructed for two study regions in North America using a combination of GCM output and synoptic–dynamical reasoning. The approach begins by describing the structure and components of a climate scenario and identifying the dynamical determinants of large-scale and regional climate. Expert judgement techniques are used to categorize the tendencies of these elements in response to increased greenhouse forcing in climate model studies. For many of the basic dynamical elements, tendencies are ambiguous, and changes in sign (magnitude, position) can usually be argued in either direction. A set of climate scenarios is produced for winter and summer, emphasizing the interrelationships among dynamical features, and adjusting GCM results on the basis of known deficiences in GCM simulations of the dynamical features. The scenarios are qualitative only, consistent with the level of precision afforded by the uncertainty in understanding of the dynamics, and in order to provide an outline of the reasoning and chain of contingencies on which the scenarios are based. The three winter scenarios outlined correspond roughly to a north–south displacement of the stationary wave pattern, to an increase in amplitude of the pattern, and to a shift in phase of the pattern. These scenarios illustrate that small changes in the dynamics can lead to large changes in regional climate in some regions, while other regions are apparently insensitive to some of the large changes in dynamics that can be plausibly hypothesized. The dynamics of summer regional climate changes are even more difficult to project, though thermodynamic considerations allow some more general conclusions to be reached in this season. Given present uncertainties it is difficult to constrain regional climate projections.

Full access
Nathan J. Steiger
,
Gregory J. Hakim
,
Eric J. Steig
,
David S. Battisti
, and
Gerard H. Roe

Abstract

The efficacy of a novel ensemble data assimilation (DA) technique is examined in the climate field reconstruction (CFR) of surface temperature. A minimalistic, computationally inexpensive DA technique is employed that requires only a static ensemble of climatologically plausible states. Pseudoproxy experiments are performed with both general circulation model (GCM) and Twentieth Century Reanalysis (20CR) data by reconstructing surface temperature fields from a sparse network of noisy pseudoproxies. The DA approach is compared to a conventional CFR approach based on principal component analysis (PCA) for experiments on global domains. DA outperforms PCA in reconstructing global-mean temperature in all experiments and is more consistent across experiments, with a range of time series correlations of 0.69–0.94 compared to 0.19–0.87 for the PCA method. DA improvements are even more evident in spatial reconstruction skill, especially in sparsely sampled pseudoproxy regions and for 20CR experiments. It is hypothesized that DA improves spatial reconstructions because it relies on coherent, spatially local temperature patterns, which remain robust even when glacial states are used to reconstruct nonglacial states and vice versa. These local relationships, as utilized by DA, appear to be more robust than the orthogonal patterns of variability utilized by PCA. Comparing results for GCM and 20CR data indicates that pseudoproxy experiments that rely solely on GCM data may give a false impression of reconstruction skill.

Full access