Search Results

You are looking at 11 - 20 of 27 items for

  • Author or Editor: Gerard H. Roe x
  • Refine by Access: All Content x
Clear All Modify Search
Justin R. Minder
,
Dale R. Durran
, and
Gerard H. Roe

Abstract

Observations show that on a mountainside the boundary between snow and rain, the snow line, is often located at an elevation hundreds of meters below its elevation in the free air upwind. The processes responsible for this mesoscale lowering of the snow line are examined in semi-idealized simulations with a mesoscale numerical model and in simpler theoretical models. Spatial variations in latent cooling from melting precipitation, in adiabatic cooling from vertical motion, and in the melting distance of frozen hydrometeors are all shown to make important contributions. The magnitude of the snow line drop, and the relative importance of the responsible processes, depends on properties of the incoming flow and terrain geometry. Results suggest that the depression of the snow line increases with increasing temperature, a relationship that, if present in nature, could act to buffer mountain hydroclimates against the impacts of climate warming. The simulated melting distance, and hence the snow line, depends substantially on the choice of microphysical parameterization, pointing to an important source of uncertainty in simulations of mountain snowfall.

Full access
Kyle C. Armour
,
Nicholas Siler
,
Aaron Donohoe
, and
Gerard H. Roe

Abstract

Meridional atmospheric heat transport (AHT) has been investigated through three broad perspectives: a dynamic perspective, linking AHT to the poleward flux of moist static energy (MSE) by atmospheric motions; an energetic perspective, linking AHT to energy input to the atmosphere by top-of-atmosphere radiation and surface heat fluxes; and a diffusive perspective, representing AHT in terms downgradient energy transport. It is shown here that the three perspectives provide complementary diagnostics of meridional AHT and its changes under greenhouse gas forcing. When combined, the energetic and diffusive perspectives offer prognostic insights: anomalous AHT is constrained to satisfy the net energetic demands of radiative forcing, radiative feedbacks, and ocean heat uptake; in turn, the meridional pattern of warming must adjust to produce those AHT changes, and does so approximately according to diffusion of anomalous MSE. The relationship between temperature and MSE exerts strong constraints on the warming pattern, favoring polar amplification. These conclusions are supported by use of a diffusive moist energy balance model (EBM) that accurately predicts zonal-mean warming and AHT changes within comprehensive general circulation models (GCMs). A dry diffusive EBM predicts similar AHT changes in order to satisfy the same energetic constraints, but does so through tropically amplified warming—at odds with the GCMs’ polar-amplified warming pattern. The results suggest that polar-amplified warming is a near-inevitable consequence of a moist, diffusive atmosphere’s response to greenhouse gas forcing. In this view, atmospheric circulations must act to satisfy net AHT as constrained by energetics.

Full access
Nicholas Siler
,
Gerard H. Roe
, and
Kyle C. Armour

Abstract

Recent studies have shown that the change in poleward energy transport under global warming is well approximated by downgradient transport of near-surface moist static energy (MSE) modulated by the spatial pattern of radiative forcing, feedbacks, and ocean heat uptake. Here we explore the implications of downgradient MSE transport for changes in the vertically integrated moisture flux and thus the zonal-mean pattern of evaporation minus precipitation (E − P). Using a conventional energy balance model that we have modified to represent the Hadley cell, we find that downgradient MSE transport implies changes in E − P that mirror those simulated by comprehensive global climate models (GCMs), including a poleward expansion of the subtropical belt where E > P, and a poleward shift in the extratropical minimum of E − P associated with the storm tracks. The surface energy budget imposes further constraints on E and P independently: E increases almost everywhere, with relatively little spatial variability, while P must increase in the deep tropics, decrease in the subtropics, and increase in middle and high latitudes. Variations in the spatial pattern of radiative forcing, feedbacks, and ocean heat uptake across GCMs modulate these basic features, accounting for much of the model spread in the zonal-mean response of E and P to climate change. Thus, the principle of downgradient energy transport appears to provide a simple explanation for the basic structure of hydrologic cycle changes in GCM simulations of global warming.

Full access
Kyle C. Armour
,
Cecilia M. Bitz
, and
Gerard H. Roe

Abstract

The sensitivity of global climate with respect to forcing is generally described in terms of the global climate feedback—the global radiative response per degree of global annual mean surface temperature change. While the global climate feedback is often assumed to be constant, its value—diagnosed from global climate models—shows substantial time variation under transient warming. Here a reformulation of the global climate feedback in terms of its contributions from regional climate feedbacks is proposed, providing a clear physical insight into this behavior. Using (i) a state-of-the-art global climate model and (ii) a low-order energy balance model, it is shown that the global climate feedback is fundamentally linked to the geographic pattern of regional climate feedbacks and the geographic pattern of surface warming at any given time. Time variation of the global climate feedback arises naturally when the pattern of surface warming evolves, actuating feedbacks of different strengths in different regions. This result has substantial implications for the ability to constrain future climate changes from observations of past and present climate states. The regional climate feedbacks formulation also reveals fundamental biases in a widely used method for diagnosing climate sensitivity, feedbacks, and radiative forcing—the regression of the global top-of-atmosphere radiation flux on global surface temperature. Further, it suggests a clear mechanism for the “efficacies” of both ocean heat uptake and radiative forcing.

Full access
Sandra M. Penny
,
David S. Battisti
, and
Gerard H. Roe

Abstract

This paper examines how variations in two mechanisms, upstream seeding and jet-core strength, relate to storminess within the cold season (October–April) Pacific storm track. It is found that about 17% of observed storminess covaries with the strength of the upstream wave source, and the relationship is robust throughout the cold season and for both the Pacific and Atlantic basins. Further analyses of the intraseasonal variability in the strength and structure of the wintertime [December–February (DJF)] Pacific jet stream draw upon both Eulerian-variance and feature-tracking statistics to diagnose why winter months with a strong-core jet stream have weaker storminess than those with a weak-core jet stream. Contrary to expectations, it is shown that the basic spatial patterns actually conform to a simple linear picture: regions with a weaker jet have weaker storminess. The overall decrease in storminess is most strongly linked to the weaker amplitude of individual storms in strong-core months. Previously proposed mechanisms are evaluated in the context of these new results. Last, this analysis provides further evidence that the midwinter suppression in storminess over the North Pacific Ocean is primarily due to a notable lack of storminess upstream of the Pacific storm track in the heart of winter.

Full access
Sandra Penny
,
Gerard H. Roe
, and
David S. Battisti

Abstract

Feature-tracking techniques are employed to investigate why there is a relative minimum in storminess during winter within the Pacific storm track (the midwinter suppression). It is found that the frequency and amplitude of disturbances entering the Pacific storm track from midlatitude Asia are substantially reduced during winter relative to fall and spring and that the magnitude of this reduction is more than sufficient to account for the midwinter supression. Growth rates of individual disturbances are calculated and compared to expectations from linear theory for several regions of interest. Although there are discrepancies between linear expectations and observed growth rates over the Pacific, the growth of disturbances within the Pacific storm track cannot explain why the midwinter suppression exists. Furthermore, it is determined that the development of a wintertime reduction in storminess over midlatitude Asia is consistent with linear expectations, which predict a wintertime minimum in Eady growth rates in this region, mainly because of increased static stability. Several other mechanisms that may contribute to the initiation of the midwinter suppression over midlatitude Asia are discussed, including the interaction between upper-level waves and topography, the behavior of waves upwind of the Tibetan Plateau, and the initiation of lee cyclones.

Full access
Xiaojuan Liu
,
David S. Battisti
, and
Gerard H. Roe

Abstract

The question “What determines the meridional heat transport (MHT)?” is explored by performing a series of rotation-rate experiments with an aquaplanet GCM coupled to a slab ocean. The change of meridional heat transport with rotation rate falls into two regimes: in a “slow rotating” regime (rotation rate < 1/2 modern rotation) MHT decreases with increasing rotation rate, whereas in a “fast rotating” regime (rotation rate ≥ 1/2 modern rotation) MHT is nearly invariant. The two-regime feature of MHT is primarily related to the reduction in tropical clouds and increase in tropical temperature that are associated with the narrowing and weakening of the Hadley cell with increasing rotation rate. In the slow-rotating regime, the Hadley cell contracts and weakens as rotation rate is increased; the resulting warming causes a local increase in outgoing longwave radiation (OLR), which consequently decreases MHT. In the fast-rotating regime, the Hadley cell continues to contract as rotation rate is increased, resulting in a decrease in tropical and subtropical clouds that increases the local absorbed shortwave radiation (ASR) by an amount that almost exactly compensates the local increases in OLR. In the fast-rotating regime, the model heat transport is approximately diffusive, with an effective eddy diffusivity that is consistent with eddy mixing-length theory. The effective eddy diffusivity decreases with increasing rotation rate. However, this decrease is nearly offset by a strong increase in the meridional gradient of moist static energy and hence results in a near-constancy of MHT. The results herein extend previous work on the MHT by highlighting that the spatial patterns of clouds and the factors that influence them are leading controls on MHT.

Full access
Alison M. Anders
,
Gerard H. Roe
,
Dale R. Durran
, and
Justin R. Minder

Abstract

Persistent, 10-km-scale gradients in climatological precipitation tied to topography are documented with a finescale rain and snow gauge network in the Matheny Ridge area of the Olympic Mountains of Washington State. Precipitation totals are 50% higher on top of an ∼800-m-high ridge relative to valleys on either side, 10 km distant. Operational fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) runs on a 4-km grid produce similar precipitation patterns with enhanced precipitation over high topography for 6 water years.

The performance of the MM5 is compared to the gauge data for 3 wet seasons and for 10 large precipitation events. The cumulative MM5 precipitation forecasts for all seasons and for the sum of all 10 large events compare well with the precipitation measured by the gauges, although some of the individual events are significantly over- or underforecast. This suggests that the MM5 is reproducing the precipitation climatology in the vicinity of the gauges, but that errors for individual events may arise due to inaccurate specification of the incident flow.

A computationally simple model of orographic precipitation is shown to reproduce the major features of the event precipitation pattern on the windward side of the range. This simple model can be coupled to landscape evolution models to examine the impact of long-term spatial variability in precipitation on the evolution of topography over thousands to millions of years.

Full access
Tyler Cox
,
Aaron Donohoe
,
Gerard H. Roe
,
Kyle C. Armour
, and
Dargan M. W. Frierson

Abstract

Total poleward atmospheric heat transport (AHT) is similar in both magnitude and latitudinal structure between the Northern and Southern Hemispheres. These similarities occur despite more major mountain ranges in the Northern Hemisphere, which help create substantial stationary eddy AHT that is largely absent in the Southern Hemisphere. However, this hemispheric difference in stationary eddy AHT is compensated by hemispheric differences in other dynamic components of AHT so that total AHT is similar between hemispheres. To understand how AHT compensation occurs, we add midlatitude mountain ranges in two different general circulation models that are otherwise configured as aquaplanets. Even when midlatitude mountains are introduced, total AHT is nearly invariant. We explore the near invariance of total AHT in response to orography through dynamic, energetic, and diffusive perspectives. Dynamically, orographically induced changes to stationary eddy AHT are compensated by changes in both transient eddy and mean meridional circulation AHT. This creates an AHT system with three interconnected components that resist large changes to total AHT. Energetically, the total AHT can only change if the top-of-the-atmosphere net radiation changes at the equator-to-pole scale. Midlatitude orography does not create large-enough changes in the equator-to-pole temperature gradient to alter outgoing longwave radiation enough to substantially change total AHT. In the zonal mean, changes to absorbed shortwave radiation also often compensate for changes in outgoing longwave radiation. Diffusively, the atmosphere smooths anomalies in temperature and humidity created by the addition of midlatitude orography, such that total AHT is relatively invariant.

Significance Statement

The purpose of this study is to better understand how orography influences heat transport in the atmosphere. Enhancing our understanding of how atmospheric heat transport works is important, as heat transport helps moderate Earth’s surface temperatures and influences precipitation patterns. We find that the total amount of atmospheric heat transport does not change in the presence of mountains in the midlatitudes. Different pieces of the heat transport change, but they change in compensatory ways, such that the total heat transport remains roughly constant.

Full access
Tyler Cox
,
Kyle C. Armour
,
Gerard H. Roe
,
Aaron Donohoe
, and
Dargan M. W. Frierson

Abstract

Atmospheric heat transport is an important piece of our climate system, yet we lack a complete theory for its magnitude or changes. Atmospheric dynamics and radiation play different roles in controlling the total atmospheric heat transport (AHT) and its partitioning into components associated with eddies and mean meridional circulations. This work focuses on two specific controls: a radiative one, namely atmospheric radiative temperature tendencies, and a dynamic one, the planetary rotation rate. We use an idealized gray radiation model to employ a novel framework to lock the radiative temperature tendency and total AHT to climatological values, even while the rotation rate is varied. This setup allows for a systematic study of the effects of radiative tendency and rotation rate on AHT. We find that rotation rate controls the latitudinal extent of the Hadley cell and the heat transport efficiency of eddies. Both the rotation rate and radiative tendency influence the strength of the Hadley cell and the strength of equator–pole energy differences that are important for AHT by eddies. These two controls do not always operate independently and can reinforce or dampen each other. In addition, we examine how individual AHT components, which vary with latitude, sum to a total AHT that varies smoothly with latitude. At slow rotation rates the mean meridional circulation is most important in ensuring total AHT varies smoothly with latitude, while eddies are most important at rotation rates similar to, and faster than, those of Earth.

Full access