Search Results

You are looking at 11 - 20 of 23 items for

  • Author or Editor: Guiling Wang x
  • Refine by Access: All Content x
Clear All Modify Search
Guiling Wang
and
Elfatih A. B. Eltahir

Abstract

The natural variability in the annual flow of the Nile is significantly regulated by the El Niño–Southern Oscillation (ENSO). In this paper, several sources of information are combined, including ENSO, rainfall over Ethiopia, and the recent history of river flow in the Nile, in order to obtain accurate forecasts of the Nile flood at Aswan. The Bayesian theorem is used in developing the discriminant forecasting algorithm. Conditional categoric probabilities are used to describe the flood forecasts, and a synoptic index is defined to measure the forecasts’ skill. The results presented show that ENSO information is the only valuable predictor for the long-range forecasts (lead time longer than the hydrological response timescale, which is 2–3 months in this study). However, the incorporation of the rainfall and river flow information in addition to the ENSO information significantly improves the quality of the medium-range forecasts (lead time shorter than the hydrological response timescale).

Full access
Dana Parr
,
Guiling Wang
, and
David Bjerklie

Abstract

Using the Connecticut River basin as an example, this study assesses the extent to which remote sensing data can help improve hydrological modeling and how it may influence projected future hydrological trends. The dynamic leaf area index (LAI) derived from satellite remote sensing was incorporated into the Variable Infiltration Capacity model (VIC) to enable an interannually varying seasonal cycle of vegetation (VICVEG); the evapotranspiration (ET) data based on remote sensing were combined with ET from a default VIC simulation to develop a simple bias-correction algorithm, and the simulation was then repeated with the bias-corrected ET replacing the simulated ET in the model (VICET). VICET performs significantly better in simulating the temporal variability of river discharge at daily, biweekly, monthly, and seasonal time scales, while VICVEG better captures the interannual variability of discharge, particularly in the winter and spring, and shows slight improvements to soil moisture estimates. The methodology of incorporating ET data into VIC as a bias-correction tool also influences the modeled future hydrological trends. Compared to the default VIC, VICET portrays a future characterized by greater drought risk and a stronger decreasing trend of minimum river flows. Integrating remote sensing data with hydrological modeling helps characterize the range of model-related uncertainties and more accurately reconstruct historic river flow estimates, leading to a better understanding and prediction of hydrological response to future climate changes.

Full access
Rui Mei
,
Guiling Wang
, and
Huanghe Gu

Abstract

This study investigates the land–atmosphere coupling strength during summer over the United States using the Regional Climate Model version 4 (RegCM4)–Community Land Model version 3.5 (CLM3.5). First, a 10-yr simulation driven with reanalysis lateral boundary conditions (LBCs) is conducted to evaluate the model performance. The model is then used to quantify the land–atmosphere coupling strength, predictability, and added forecast skill (for precipitation and 2-m air temperature) attributed to realistic land surface initialization following the Global Land–Atmosphere Coupling Experiment (GLACE) approaches. Similar to previous GLACE results using global climate models (GCMs), GLACE-type experiments with RegCM4 identify the central United States as a region of strong land–atmosphere coupling, with soil moisture–temperature coupling being stronger than soil moisture–precipitation coupling, and confirm that realistic soil moisture initialization is more promising in improving temperature forecasts than precipitation forecasts. At a 1–15-day lead, the added forecast skill reflects predictability (or land–atmosphere coupling strength) indicating that that model can capture the realistic land–atmosphere coupling at a short time scale. However, at a 16–30-day lead, predictability cannot translate to added forecast skill, implying that the coupling at the longer time scale may not be represented well in the model. In addition, comparison of results from GLACE2-type experiments with RegCM4 driven by reanalysis LBCs and those driven by GCM LBCs suggest that the intrinsic land–atmosphere coupling strength within the regional model is the dominant factor for the added forecast skill at a 1–15-day lead, while the impact of LBCs from the GCM may play a dominant role in determining the signal of added forecast skill in the regional model at a 16–30-day lead. It demonstrates the complexities of using regional climate model for GLACE-type studies.

Full access
Dagang Wang
,
Guiling Wang
, and
Emmanouil N. Anagnostou

Abstract

Precipitation exhibits significant spatial variability at scales much smaller than the typical size of climate model grid cells. Neglecting such subgrid-scale variability in climate models causes unrealistic representation of land–atmosphere flux exchanges. It is especially problematic over densely vegetated land. This paper addresses this issue by incorporating satellite-based precipitation observations into the representation of canopy interception processes in land surface models. Rainfall data derived from passive microwave (PM) observations are used to obtain realistic estimates of 1) conditional mean rain rates, which together with the modeled rain rate are used to estimate the rainfall coverage fraction at each model grid cell in this study, and 2) the probability density function (pdf) of rain rates within the rain-covered areas. Both of these properties significantly impact the land–atmosphere water vapor exchanges. Based on the above information, a statistical–dynamical approach is taken to incorporate the representation of precipitation subgrid variability into canopy interception processes in land surface models. The results reveal that incorporation of precipitation subgrid variability significantly alters the partitioning between runoff and total evapotranspiration as well as the partitioning among the three components of evapotranspiration (i.e., canopy interception loss, ground evaporation, and plant transpiration). This further influences soil water, surface temperature, and surface heat fluxes. It is shown that the choice of the rain-rate pdf within rain-covered areas has an effect on the model simulation of land–atmosphere flux exchanges. This study demonstrates that land surface and climate models can substantially benefit from the fine-resolution remotely sensed rainfall observations.

Full access
Ying Shi
,
Miao Yu
,
Amir Erfanian
, and
Guiling Wang

Abstract

Using the Regional Climate Model (RegCM) coupled with the Community Land Model (CLM) including modules of carbon–nitrogen cycling (CN) and vegetation dynamics (DV), this study evaluates the performance of the model with different capacity of representing vegetation processes in simulating the present-day climate over China based on three 21-yr simulations driven with boundary conditions from the ERA-Interim reanalysis data during 1989–2009. For each plant functional type (PFT), the plant pheonology, density, and fractional coverage in RegCM-CLM are all prescribed as static from year to year; RegCM-CLM-CN prescribes static fractional coverage but predicts plant phenology and density, and RegCM-CLM-CN-DV predicts plant phenology, density, and fractional coverage. Compared against the observational data, all three simulations reproduce the present-day climate well, including the wind fields, temperature and precipitation seasonal cycles, extremes, and interannual variabilities. Relative to RegCM-CLM, both RegCM-CLM-CN and RegCM-CLM-CN-DV perform better in simulating the interannual variability of temperature and spatial distribution of mean precipitation, but produce larger biases in the mean temperature field. RegCM-CLM-CN overestimates leaf area index (LAI), which enhances the cold biases and alleviates the dry biases found in RegCM-CLM. RegCM-CLM-CN-DV underestimates vegetation cover and/or stature, and hence overestimates surface albedo, which enhances the wintertime cold and dry biases found in RegM-CLM. During summer, RegCM-CLM-CN-DV overestimates LAI in south and east China, which enhances the cold biases through increased evaporative cooling; in the west where evaporation is low, the albedo effect of the underestimated vegetation cover is still dominant, leading to enhanced cold biases relative to RegCM-CLM.

Full access
Roop Saini
,
Guiling Wang
, and
Jeremy S. Pal

Abstract

This study tackles the contribution of soil moisture feedback to the development of extreme summer precipitation anomalies over the conterminous United States using a regional climate model. The model performs well in reproducing both the mean climate and extremes associated with drought and flood. A large set of experiments using the model are conducted that involve swapped initial soil moisture between flood and drought years using the 1988 and 2012 droughts and 1993 flood as examples. The starting time of these experiments includes 1 May (late spring) and 1 June (early summer). For all three years, the impact of 1 May soil moisture swapping is much weaker than the 1 June soil moisture swapping. In 1988 and 2012, replacing the 1 June soil moisture with that from 1993 reduces both the spatial extent and the severity of the simulated summer drought and heat. The impact is especially strong in 2012. In 1993, however, replacing the 1 June soil moisture with that from 1988 has little impact on precipitation. The contribution of soil moisture feedback to summer extremes is larger in 2012 than in 1988 and 1993. This may be because of the presence of strong anomalies in large-scale forcing in 1988 and 1993 that prohibit or favor precipitation, and the lack of such in 2012. This study demonstrates how the contribution of land–atmosphere feedback to the development of seasonal climate anomalies may vary from year to year and highlights its importance in the 2012 drought.

Full access
Di Liu
,
Guiling Wang
,
Rui Mei
,
Zhongbo Yu
, and
Huanghe Gu

Abstract

This paper focuses on diagnosing the strength of soil moisture–atmosphere coupling at subseasonal to seasonal time scales over Asia using two different approaches: the conditional correlation approach [applied to the Global Land Data Assimilation System (GLDAS) data, the Climate Forecast System Reanalysis (CFSR) data, and output from the regional climate model, version 4 (RegCM4)] and the Global Land–Atmosphere Coupling Experiment (GLACE) approach applied to the RegCM4. The conditional correlation indicators derived from the model output and the two observational/reanalysis datasets agree fairly well with each other in the spatial pattern of the land–atmosphere coupling signal, although the signal in CFSR data is stronger and spatially more extensive than the GLDAS data and the RegCM4 output. Based on the impact of soil moisture on 2-m air temperature, the land–atmosphere coupling hotspots common to all three data sources include the Indochina region in spring and summer, the India region in summer and fall, and north-northeastern China and southwestern Siberia in summer. For precipitation, all data sources produce a weak and spatially scattered signal, indicating the lack of any strong coupling between soil moisture and precipitation, for both precipitation amount and frequency. Both the GLACE approach and the conditional correlation approach (applied to all three data sources) identify evaporation and evaporative fraction as important links for the coupling between soil moisture and precipitation/temperature. Results on soil moisture–temperature coupling strength from the GLACE-type experiment using RegCM4 are in good agreement with those from the conditional correlation analysis applied to output from the same model, despite substantial differences between the two approaches in the terrestrial segment of the land–atmosphere coupling.

Full access
Kaihao Long
,
Dagang Wang
,
Guiling Wang
,
Jinxin Zhu
,
Shuo Wang
, and
Shuishi Xie

Abstract

The relationship between extreme precipitation intensity and temperature has been comprehensively studied over different regions worldwide. However, the effect of temperature on the spatiotemporal organization of precipitation, which can have a significant impact on precipitation intensity, has not been adequately studied or understood. In this study, we propose a novel approach to quantifying the spatial and temporal concentration of precipitation at the event level and study how the concentration varies with temperature. The results based on rain gauge data from 843 stations in the Ganzhou county, a humid region in south China, show that rain events tend to be more concentrated both temporally and spatially at higher temperature, and this increase in concentration qualitatively holds for events of different precipitation amounts and durations. The effects of temperature on precipitation organization in space and in time differ at high temperatures. The temporal concentration increases with temperature up to a threshold (approximately 24°C) beyond which it plateaus, whereas the spatial concentration keeps rising with temperature. More concentrated precipitation, in addition to a projected increase of extreme precipitation, would intensify flooding in a warming world, causing more detrimental effects.

Full access
Qinqing Liu
,
Meijian Yang
,
Koushan Mohammadi
,
Dongjin Song
,
Jinbo Bi
, and
Guiling Wang

Abstract

A major challenge for food security worldwide is the large interannual variability of crop yield, and climate change is expected to further exacerbate this volatility. Accurate prediction of the crop response to climate variability and change is critical for short-term management and long-term planning in multiple sectors. In this study, using maize in the U.S. Corn Belt as an example, we train and validate multiple machine learning (ML) models predicting crop yield based on meteorological variables and soil properties using the leaving-one-year-out approach, and compare their performance with that of a widely used process-based crop model (PBM). Our proposed long short-term memory model with attention (LSTMatt) outperforms other ML models (including other variations of LSTM developed in this study) and explains 73% of the spatiotemporal variance of the observed maize yield, in contrast to 16% explained by the regionally calibrated PBM; the magnitude of yield prediction errors in LSTMatt is about one-third of that in the PBM. When applied to the extreme drought year 2012 that has no counterpart in the training data, the LSTMatt performance drops but still shows advantage over the PBM. Findings from this study suggest a great potential for out-of-sample application of the LSTMatt model to predict crop yield under a changing climate.

Significance Statement

Changing climate is expected to exacerbate extreme weather events, thus affecting global food security. Accurate estimation and prediction of crop productivity under extremes are crucial for long-term agricultural decision-making and climate adaptation planning. Here we seek to improve crop yield prediction from meteorological features and soil properties using machine learning approaches. Our long short-term memory (LSTM) model with attention and shortcut connection explains 73% of the spatiotemporal variance of the observed maize yield in the U.S. Corn Belt and outperforms a widely used process-based crop model even in an extreme drought year when meteorological conditions are significantly different from the training data. Our findings suggest great potential for out-of-sample application of the LSTM model to predict crop yield under a changing climate.

Free access
Xubin Zeng
,
Michael Barlage
,
Robert E. Dickinson
,
Yongjiu Dai
,
Guiling Wang
, and
Keith Oleson

Abstract

In arid and semiarid regions most of the solar radiation penetrates through the canopy and reaches the ground, and hence the turbulent exchange coefficient under canopy Cs becomes important. The use of a constant Cs that is only appropriate for thick canopies is found to be primarily responsible for the excessive warm bias of around 10 K in monthly mean ground temperature over these regions in version 2 of the Community Climate System Model (CCSM2). New Cs formulations are developed for the consistent treatment of undercanopy turbulence for both thick and thin canopies in land models, and provide a preliminary solution of this problem.

Full access