Search Results
You are looking at 11 - 14 of 14 items for :
- Author or Editor: Guiling Wang x
- Journal of Hydrometeorology x
- Refine by Access: All Content x
Abstract
This study tackles the contribution of soil moisture feedback to the development of extreme summer precipitation anomalies over the conterminous United States using a regional climate model. The model performs well in reproducing both the mean climate and extremes associated with drought and flood. A large set of experiments using the model are conducted that involve swapped initial soil moisture between flood and drought years using the 1988 and 2012 droughts and 1993 flood as examples. The starting time of these experiments includes 1 May (late spring) and 1 June (early summer). For all three years, the impact of 1 May soil moisture swapping is much weaker than the 1 June soil moisture swapping. In 1988 and 2012, replacing the 1 June soil moisture with that from 1993 reduces both the spatial extent and the severity of the simulated summer drought and heat. The impact is especially strong in 2012. In 1993, however, replacing the 1 June soil moisture with that from 1988 has little impact on precipitation. The contribution of soil moisture feedback to summer extremes is larger in 2012 than in 1988 and 1993. This may be because of the presence of strong anomalies in large-scale forcing in 1988 and 1993 that prohibit or favor precipitation, and the lack of such in 2012. This study demonstrates how the contribution of land–atmosphere feedback to the development of seasonal climate anomalies may vary from year to year and highlights its importance in the 2012 drought.
Abstract
This study tackles the contribution of soil moisture feedback to the development of extreme summer precipitation anomalies over the conterminous United States using a regional climate model. The model performs well in reproducing both the mean climate and extremes associated with drought and flood. A large set of experiments using the model are conducted that involve swapped initial soil moisture between flood and drought years using the 1988 and 2012 droughts and 1993 flood as examples. The starting time of these experiments includes 1 May (late spring) and 1 June (early summer). For all three years, the impact of 1 May soil moisture swapping is much weaker than the 1 June soil moisture swapping. In 1988 and 2012, replacing the 1 June soil moisture with that from 1993 reduces both the spatial extent and the severity of the simulated summer drought and heat. The impact is especially strong in 2012. In 1993, however, replacing the 1 June soil moisture with that from 1988 has little impact on precipitation. The contribution of soil moisture feedback to summer extremes is larger in 2012 than in 1988 and 1993. This may be because of the presence of strong anomalies in large-scale forcing in 1988 and 1993 that prohibit or favor precipitation, and the lack of such in 2012. This study demonstrates how the contribution of land–atmosphere feedback to the development of seasonal climate anomalies may vary from year to year and highlights its importance in the 2012 drought.
Abstract
This paper focuses on diagnosing the strength of soil moisture–atmosphere coupling at subseasonal to seasonal time scales over Asia using two different approaches: the conditional correlation approach [applied to the Global Land Data Assimilation System (GLDAS) data, the Climate Forecast System Reanalysis (CFSR) data, and output from the regional climate model, version 4 (RegCM4)] and the Global Land–Atmosphere Coupling Experiment (GLACE) approach applied to the RegCM4. The conditional correlation indicators derived from the model output and the two observational/reanalysis datasets agree fairly well with each other in the spatial pattern of the land–atmosphere coupling signal, although the signal in CFSR data is stronger and spatially more extensive than the GLDAS data and the RegCM4 output. Based on the impact of soil moisture on 2-m air temperature, the land–atmosphere coupling hotspots common to all three data sources include the Indochina region in spring and summer, the India region in summer and fall, and north-northeastern China and southwestern Siberia in summer. For precipitation, all data sources produce a weak and spatially scattered signal, indicating the lack of any strong coupling between soil moisture and precipitation, for both precipitation amount and frequency. Both the GLACE approach and the conditional correlation approach (applied to all three data sources) identify evaporation and evaporative fraction as important links for the coupling between soil moisture and precipitation/temperature. Results on soil moisture–temperature coupling strength from the GLACE-type experiment using RegCM4 are in good agreement with those from the conditional correlation analysis applied to output from the same model, despite substantial differences between the two approaches in the terrestrial segment of the land–atmosphere coupling.
Abstract
This paper focuses on diagnosing the strength of soil moisture–atmosphere coupling at subseasonal to seasonal time scales over Asia using two different approaches: the conditional correlation approach [applied to the Global Land Data Assimilation System (GLDAS) data, the Climate Forecast System Reanalysis (CFSR) data, and output from the regional climate model, version 4 (RegCM4)] and the Global Land–Atmosphere Coupling Experiment (GLACE) approach applied to the RegCM4. The conditional correlation indicators derived from the model output and the two observational/reanalysis datasets agree fairly well with each other in the spatial pattern of the land–atmosphere coupling signal, although the signal in CFSR data is stronger and spatially more extensive than the GLDAS data and the RegCM4 output. Based on the impact of soil moisture on 2-m air temperature, the land–atmosphere coupling hotspots common to all three data sources include the Indochina region in spring and summer, the India region in summer and fall, and north-northeastern China and southwestern Siberia in summer. For precipitation, all data sources produce a weak and spatially scattered signal, indicating the lack of any strong coupling between soil moisture and precipitation, for both precipitation amount and frequency. Both the GLACE approach and the conditional correlation approach (applied to all three data sources) identify evaporation and evaporative fraction as important links for the coupling between soil moisture and precipitation/temperature. Results on soil moisture–temperature coupling strength from the GLACE-type experiment using RegCM4 are in good agreement with those from the conditional correlation analysis applied to output from the same model, despite substantial differences between the two approaches in the terrestrial segment of the land–atmosphere coupling.
Abstract
The relationship between extreme precipitation intensity and temperature has been comprehensively studied over different regions worldwide. However, the effect of temperature on the spatiotemporal organization of precipitation, which can have a significant impact on precipitation intensity, has not been adequately studied or understood. In this study, we propose a novel approach to quantifying the spatial and temporal concentration of precipitation at the event level and study how the concentration varies with temperature. The results based on rain gauge data from 843 stations in the Ganzhou county, a humid region in south China, show that rain events tend to be more concentrated both temporally and spatially at higher temperature, and this increase in concentration qualitatively holds for events of different precipitation amounts and durations. The effects of temperature on precipitation organization in space and in time differ at high temperatures. The temporal concentration increases with temperature up to a threshold (approximately 24°C) beyond which it plateaus, whereas the spatial concentration keeps rising with temperature. More concentrated precipitation, in addition to a projected increase of extreme precipitation, would intensify flooding in a warming world, causing more detrimental effects.
Abstract
The relationship between extreme precipitation intensity and temperature has been comprehensively studied over different regions worldwide. However, the effect of temperature on the spatiotemporal organization of precipitation, which can have a significant impact on precipitation intensity, has not been adequately studied or understood. In this study, we propose a novel approach to quantifying the spatial and temporal concentration of precipitation at the event level and study how the concentration varies with temperature. The results based on rain gauge data from 843 stations in the Ganzhou county, a humid region in south China, show that rain events tend to be more concentrated both temporally and spatially at higher temperature, and this increase in concentration qualitatively holds for events of different precipitation amounts and durations. The effects of temperature on precipitation organization in space and in time differ at high temperatures. The temporal concentration increases with temperature up to a threshold (approximately 24°C) beyond which it plateaus, whereas the spatial concentration keeps rising with temperature. More concentrated precipitation, in addition to a projected increase of extreme precipitation, would intensify flooding in a warming world, causing more detrimental effects.
Abstract
This study compares projected changes of precipitation characteristics in the U.S. Northeast in two analog-based climate downscaling products, Multivariate Adaptive Constructed Analogs (MACA) and Localized Constructed Analogs (LOCA). The level of similarity or differences between the two products varies with the type of precipitation metrics. For the total precipitation amount, the two products project significant annual increases that are similar in magnitude, spatial pattern, and seasonal distribution, with the largest increases in winter and spring. For the overall precipitation intensity or temporal aggregation of heavy precipitation (e.g., number of days with more than one inch of precipitation, the simple intensity index, and the fraction of annual precipitation accounted for by heavy events), both products project significant increases across the region with strong model consensus; the magnitude of absolute increases are similar between the two products, but the relative increases are larger in LOCA due to an underestimation of heavy precipitation in LOCA’s training data. For precipitation extremes such as the annual maximum 1-day precipitation, both products project significant increases in the long-term mean, but the magnitude of both the absolute and relative changes are much smaller in LOCA than in MACA, indicating that the extreme precipitation differences in the training data are amplified in future projections as a result of the analog-based downscaling algorithms. The two products differ the most in the intensity and frequency of rare extremes (e.g., 1-in-20-years events) for which MACA projects significant increases while the LOCA-projected changes are inconclusive over much of the study area.
Abstract
This study compares projected changes of precipitation characteristics in the U.S. Northeast in two analog-based climate downscaling products, Multivariate Adaptive Constructed Analogs (MACA) and Localized Constructed Analogs (LOCA). The level of similarity or differences between the two products varies with the type of precipitation metrics. For the total precipitation amount, the two products project significant annual increases that are similar in magnitude, spatial pattern, and seasonal distribution, with the largest increases in winter and spring. For the overall precipitation intensity or temporal aggregation of heavy precipitation (e.g., number of days with more than one inch of precipitation, the simple intensity index, and the fraction of annual precipitation accounted for by heavy events), both products project significant increases across the region with strong model consensus; the magnitude of absolute increases are similar between the two products, but the relative increases are larger in LOCA due to an underestimation of heavy precipitation in LOCA’s training data. For precipitation extremes such as the annual maximum 1-day precipitation, both products project significant increases in the long-term mean, but the magnitude of both the absolute and relative changes are much smaller in LOCA than in MACA, indicating that the extreme precipitation differences in the training data are amplified in future projections as a result of the analog-based downscaling algorithms. The two products differ the most in the intensity and frequency of rare extremes (e.g., 1-in-20-years events) for which MACA projects significant increases while the LOCA-projected changes are inconclusive over much of the study area.