Search Results
You are looking at 11 - 15 of 15 items for
- Author or Editor: Hirofumi Tomita x
- Refine by Access: All Content x
Abstract
The organization of clouds has been widely studied by numerical modeling as an essential problem in climate science. Convective self-aggregation (CSA) occurs in radiative–convective equilibrium when the model domain size is sufficiently large. However, we have not yet reached a comprehensive understanding of the mechanism of CSA onset. This study argues that low-level circulation is responsible for horizontal moisture transport and that its coupling with variabilities of diabatic heating and moisture in the free troposphere is essential. We simulated scattered and aggregated convection by varying the domain size as a control parameter constraining the horizontal scale associated with the CSA onset. Based on a new analysis method quantifying the circulation spanning dry and moist regions, we found that 1) the upgradient moisture transport in the aggregated cases is associated with low-level circulation development, amplifying the horizontal moisture contrast; 2) the horizontal buoyancy gradient due to strong radiative cooling in the dry region intensifies the low-level circulation; 3) the free-tropospheric subsidence intrudes into the boundary layer in the dry region preceding the intensification of low-level circulation; and 4) the subsidence intrusion is due to a weakening of convective heating in the free troposphere associated with the moisture variability at a larger horizontal scale. This study provides new insights into the organization mechanism of clouds unifying the different mechanisms impacting CSA: the free-tropospheric moisture, radiation, convection, and low-level circulation.
Abstract
The organization of clouds has been widely studied by numerical modeling as an essential problem in climate science. Convective self-aggregation (CSA) occurs in radiative–convective equilibrium when the model domain size is sufficiently large. However, we have not yet reached a comprehensive understanding of the mechanism of CSA onset. This study argues that low-level circulation is responsible for horizontal moisture transport and that its coupling with variabilities of diabatic heating and moisture in the free troposphere is essential. We simulated scattered and aggregated convection by varying the domain size as a control parameter constraining the horizontal scale associated with the CSA onset. Based on a new analysis method quantifying the circulation spanning dry and moist regions, we found that 1) the upgradient moisture transport in the aggregated cases is associated with low-level circulation development, amplifying the horizontal moisture contrast; 2) the horizontal buoyancy gradient due to strong radiative cooling in the dry region intensifies the low-level circulation; 3) the free-tropospheric subsidence intrudes into the boundary layer in the dry region preceding the intensification of low-level circulation; and 4) the subsidence intrusion is due to a weakening of convective heating in the free troposphere associated with the moisture variability at a larger horizontal scale. This study provides new insights into the organization mechanism of clouds unifying the different mechanisms impacting CSA: the free-tropospheric moisture, radiation, convection, and low-level circulation.
Abstract
Using a global nonhydrostatic model with explicit cloud processes, upper-cloud changes are investigated by comparing the present climate condition under the perpetual July setting and the global warming condition, in which the sea surface temperature (SST) is raised by 2°. The sensitivity of the upper-cloud cover and the ice water path (IWP) are investigated through a set of experiments. The responses of convective mass flux and convective areas are also examined, together with those of the large-scale subsidence and relative humidity in the subtropics. The responses of the IWP and the upper-cloud cover are found to be opposite; that is, as the SST increases, the IWP averaged over the tropics decreases, whereas the upper-cloud cover in the tropics increases. To clarify the IWP response, a simple conceptual model is constructed. The model consists of three columns of deep convective core, anvil, and environmental subsidence regions. The vertical profiles of hydrometers are predicted with cloud microphysics processes and kinematically prescribed circulation. The reduction in convective mass flux is found to be a primary factor in the decrease of the IWP under the global warming condition. Even when a different and more comprehensive cloud microphysics scheme is used, the reduction in the IWP due to the mass flux change is also confirmed.
Abstract
Using a global nonhydrostatic model with explicit cloud processes, upper-cloud changes are investigated by comparing the present climate condition under the perpetual July setting and the global warming condition, in which the sea surface temperature (SST) is raised by 2°. The sensitivity of the upper-cloud cover and the ice water path (IWP) are investigated through a set of experiments. The responses of convective mass flux and convective areas are also examined, together with those of the large-scale subsidence and relative humidity in the subtropics. The responses of the IWP and the upper-cloud cover are found to be opposite; that is, as the SST increases, the IWP averaged over the tropics decreases, whereas the upper-cloud cover in the tropics increases. To clarify the IWP response, a simple conceptual model is constructed. The model consists of three columns of deep convective core, anvil, and environmental subsidence regions. The vertical profiles of hydrometers are predicted with cloud microphysics processes and kinematically prescribed circulation. The reduction in convective mass flux is found to be a primary factor in the decrease of the IWP under the global warming condition. Even when a different and more comprehensive cloud microphysics scheme is used, the reduction in the IWP due to the mass flux change is also confirmed.
Abstract
The degree of gradient wind balance was investigated in a number of tropical cyclones (TCs) simulated under realistic environments. The results of global-scale numerical simulations without cumulus parameterization were used, with a horizontal mesh size of 7 km. On average, azimuthally averaged maximum tangential velocities at 850 (925) hPa in the simulated TCs were 0.72% (1.95%) faster than gradient wind–balanced tangential velocity (GWV) during quasi-steady periods. Of the simulated TCs, 75% satisfied the gradient wind balance at the radius of maximum wind speed (RMW) at 850 and at 925 hPa to within about 4.0%. These results were qualitatively similar to those obtained during the intensification phase. In contrast, averages of the maximum and minimum deviations from the GWV, in all the azimuths at the RMW, achieved up to 40% of the maximum tangential velocity. Azimuthally averaged tangential velocities exceeded the GWV (i.e., supergradient) inside the RMW in the lower troposphere, whereas the velocities were close to or slightly slower than GWV (i.e., subgradient) in the other regions. The tangential velocities at 925 hPa were faster (slower) in the right-hand (left hand) side of the TC motion. When the tangential velocities at the RMW were supergradient, the primary circulation tended to decay rapidly in the vertical direction and slowly in the radial direction, and the eyewall updraft and the RMW were at larger radii. Statistical analyses revealed that the TC with supergradient wind at the RMW at 850 hPa was characterized by stronger intensity, larger RMW, more axisymmetric structure, and an intensity stronger than potential intensity.
Abstract
The degree of gradient wind balance was investigated in a number of tropical cyclones (TCs) simulated under realistic environments. The results of global-scale numerical simulations without cumulus parameterization were used, with a horizontal mesh size of 7 km. On average, azimuthally averaged maximum tangential velocities at 850 (925) hPa in the simulated TCs were 0.72% (1.95%) faster than gradient wind–balanced tangential velocity (GWV) during quasi-steady periods. Of the simulated TCs, 75% satisfied the gradient wind balance at the radius of maximum wind speed (RMW) at 850 and at 925 hPa to within about 4.0%. These results were qualitatively similar to those obtained during the intensification phase. In contrast, averages of the maximum and minimum deviations from the GWV, in all the azimuths at the RMW, achieved up to 40% of the maximum tangential velocity. Azimuthally averaged tangential velocities exceeded the GWV (i.e., supergradient) inside the RMW in the lower troposphere, whereas the velocities were close to or slightly slower than GWV (i.e., subgradient) in the other regions. The tangential velocities at 925 hPa were faster (slower) in the right-hand (left hand) side of the TC motion. When the tangential velocities at the RMW were supergradient, the primary circulation tended to decay rapidly in the vertical direction and slowly in the radial direction, and the eyewall updraft and the RMW were at larger radii. Statistical analyses revealed that the TC with supergradient wind at the RMW at 850 hPa was characterized by stronger intensity, larger RMW, more axisymmetric structure, and an intensity stronger than potential intensity.
Abstract
Sudden local severe weather is a threat, and we explore what the highest-end supercomputing and sensing technologies can do to address this challenge. Here we show that using the Japanese flagship “K” supercomputer, we can synergistically integrate “big simulations” of 100 parallel simulations of a convective weather system at 100-m grid spacing and “big data” from the next-generation phased array weather radar that produces a high-resolution 3-dimensional rain distribution every 30 s—two orders of magnitude more data than the currently used parabolic-antenna radar. This “big data assimilation” system refreshes 30-min forecasts every 30 s, 120 times more rapidly than the typical hourly updated systems operated at the world’s weather prediction centers. A real high-impact weather case study shows encouraging results of the 30-s-update big data assimilation system.
Abstract
Sudden local severe weather is a threat, and we explore what the highest-end supercomputing and sensing technologies can do to address this challenge. Here we show that using the Japanese flagship “K” supercomputer, we can synergistically integrate “big simulations” of 100 parallel simulations of a convective weather system at 100-m grid spacing and “big data” from the next-generation phased array weather radar that produces a high-resolution 3-dimensional rain distribution every 30 s—two orders of magnitude more data than the currently used parabolic-antenna radar. This “big data assimilation” system refreshes 30-min forecasts every 30 s, 120 times more rapidly than the typical hourly updated systems operated at the world’s weather prediction centers. A real high-impact weather case study shows encouraging results of the 30-s-update big data assimilation system.
Abstract
Japan’s new geostationary satellite Himawari-8, the first of a series of the third-generation geostationary meteorological satellites including GOES-16, has been operational since July 2015. Himawari-8 produces high-resolution observations with 16 frequency bands every 10 min for full disk, and every 2.5 min for local regions. This study aims to assimilate all-sky every-10-min infrared (IR) radiances from Himawari-8 with a regional numerical weather prediction model and to investigate its impact on real-world tropical cyclone (TC) analyses and forecasts for the first time. The results show that the assimilation of Himawari-8 IR radiances improves the analyzed TC structure in both inner-core and outer-rainband regions. The TC intensity forecasts are also improved due to Himawari-8 data because of the improved TC structure analysis.
Abstract
Japan’s new geostationary satellite Himawari-8, the first of a series of the third-generation geostationary meteorological satellites including GOES-16, has been operational since July 2015. Himawari-8 produces high-resolution observations with 16 frequency bands every 10 min for full disk, and every 2.5 min for local regions. This study aims to assimilate all-sky every-10-min infrared (IR) radiances from Himawari-8 with a regional numerical weather prediction model and to investigate its impact on real-world tropical cyclone (TC) analyses and forecasts for the first time. The results show that the assimilation of Himawari-8 IR radiances improves the analyzed TC structure in both inner-core and outer-rainband regions. The TC intensity forecasts are also improved due to Himawari-8 data because of the improved TC structure analysis.