Search Results
You are looking at 11 - 14 of 14 items for
- Author or Editor: Hui Wan x
- Refine by Access: All Content x
Abstract
According to the high-accuracy linear shape–slope (μ–Λ) relationship observed by several two-dimensional video disdrometers (2DVD) in South China, a high-precision and fast solution method of the gamma (Γ) raindrop size distribution (RSD) function based on the zeroth-order moment (M 0) and the third-order moment (M 3) of RSD has been proposed. The 0-moment M 0 and 3-moment M 3 of RSD can be easily calculated from rain mass mixing ratio Q r and total number concentration N tr simulated by the two-moment (2M) microphysical scheme, respectively. Three typical heavy-rainfall processes and all RSD samples observed during 2019 in South China were selected to verify the accuracy of the method. Relative to the current widely used exponential RSD with a fixed shape parameter of zero in the 2M microphysical scheme, the Γ RSD function using the linear constrained gamma (C-G) method agreed better with the Γ-fit RSD from 2DVD observations. The characteristic precipitation parameters (e.g., rain rate, M 2, M 6, and M 9) obtained by the proposed method are generally consistent with the parameters calculated by Γ-fit RSD from 2DVD observations. The proposed method has effectively solved the problem that the shape parameter in the 2M microphysical scheme is set to a constant, and therefore the Γ RSD functions are closer to the observations and have obviously smaller errors. This method has a good potential to be applied to 2M microphysical schemes to improve the simulation of heavy precipitation in South China, but it also paves the way for in-depth applications of radar data in numerical weather prediction models.
Abstract
According to the high-accuracy linear shape–slope (μ–Λ) relationship observed by several two-dimensional video disdrometers (2DVD) in South China, a high-precision and fast solution method of the gamma (Γ) raindrop size distribution (RSD) function based on the zeroth-order moment (M 0) and the third-order moment (M 3) of RSD has been proposed. The 0-moment M 0 and 3-moment M 3 of RSD can be easily calculated from rain mass mixing ratio Q r and total number concentration N tr simulated by the two-moment (2M) microphysical scheme, respectively. Three typical heavy-rainfall processes and all RSD samples observed during 2019 in South China were selected to verify the accuracy of the method. Relative to the current widely used exponential RSD with a fixed shape parameter of zero in the 2M microphysical scheme, the Γ RSD function using the linear constrained gamma (C-G) method agreed better with the Γ-fit RSD from 2DVD observations. The characteristic precipitation parameters (e.g., rain rate, M 2, M 6, and M 9) obtained by the proposed method are generally consistent with the parameters calculated by Γ-fit RSD from 2DVD observations. The proposed method has effectively solved the problem that the shape parameter in the 2M microphysical scheme is set to a constant, and therefore the Γ RSD functions are closer to the observations and have obviously smaller errors. This method has a good potential to be applied to 2M microphysical schemes to improve the simulation of heavy precipitation in South China, but it also paves the way for in-depth applications of radar data in numerical weather prediction models.
Abstract
Landfalling tropical cyclones (TCs) often experience drastic changes in their motion, intensity, and structure due to complex multiscale interactions among atmospheric processes and among the coastal ocean, land, and atmosphere. Because of the lack of comprehensive data and low capability of numerical models, understanding of and ability to predict landfalling TCs are still limited. A 10-yr key research project on landfalling TCs was initiated and launched in 2009 in China. The project has been jointly supported by the China Ministry of Science and Technology, China Meteorological Administration (CMA), Ministry of Education, and Chinese Academy of Sciences. Its mission is to enhance understanding of landfalling TC processes and improve forecasting skills on track, intensity, and distributions of strong winds and precipitation in landfalling TCs. This article provides an overview of the project, together with highlights of some new findings and new technical developments, as well as planned future efforts.
Abstract
Landfalling tropical cyclones (TCs) often experience drastic changes in their motion, intensity, and structure due to complex multiscale interactions among atmospheric processes and among the coastal ocean, land, and atmosphere. Because of the lack of comprehensive data and low capability of numerical models, understanding of and ability to predict landfalling TCs are still limited. A 10-yr key research project on landfalling TCs was initiated and launched in 2009 in China. The project has been jointly supported by the China Ministry of Science and Technology, China Meteorological Administration (CMA), Ministry of Education, and Chinese Academy of Sciences. Its mission is to enhance understanding of landfalling TC processes and improve forecasting skills on track, intensity, and distributions of strong winds and precipitation in landfalling TCs. This article provides an overview of the project, together with highlights of some new findings and new technical developments, as well as planned future efforts.
Abstract
Numerical weather, climate, or Earth system models involve the coupling of components. At a broad level, these components can be classified as the resolved fluid dynamics, unresolved fluid dynamical aspects (i.e., those represented by physical parameterizations such as subgrid-scale mixing), and nonfluid dynamical aspects such as radiation and microphysical processes. Typically, each component is developed, at least initially, independently. Once development is mature, the components are coupled to deliver a model of the required complexity. The implementation of the coupling can have a significant impact on the model. As the error associated with each component decreases, the errors introduced by the coupling will eventually dominate. Hence, any improvement in one of the components is unlikely to improve the performance of the overall system. The challenges associated with combining the components to create a coherent model are here termed physics–dynamics coupling. The issue goes beyond the coupling between the parameterizations and the resolved fluid dynamics. This paper highlights recent progress and some of the current challenges. It focuses on three objectives: to illustrate the phenomenology of the coupling problem with references to examples in the literature, to show how the problem can be analyzed, and to create awareness of the issue across the disciplines and specializations. The topics addressed are different ways of advancing full models in time, approaches to understanding the role of the coupling and evaluation of approaches, coupling ocean and atmosphere models, thermodynamic compatibility between model components, and emerging issues such as those that arise as model resolutions increase and/or models use variable resolutions.
Abstract
Numerical weather, climate, or Earth system models involve the coupling of components. At a broad level, these components can be classified as the resolved fluid dynamics, unresolved fluid dynamical aspects (i.e., those represented by physical parameterizations such as subgrid-scale mixing), and nonfluid dynamical aspects such as radiation and microphysical processes. Typically, each component is developed, at least initially, independently. Once development is mature, the components are coupled to deliver a model of the required complexity. The implementation of the coupling can have a significant impact on the model. As the error associated with each component decreases, the errors introduced by the coupling will eventually dominate. Hence, any improvement in one of the components is unlikely to improve the performance of the overall system. The challenges associated with combining the components to create a coherent model are here termed physics–dynamics coupling. The issue goes beyond the coupling between the parameterizations and the resolved fluid dynamics. This paper highlights recent progress and some of the current challenges. It focuses on three objectives: to illustrate the phenomenology of the coupling problem with references to examples in the literature, to show how the problem can be analyzed, and to create awareness of the issue across the disciplines and specializations. The topics addressed are different ways of advancing full models in time, approaches to understanding the role of the coupling and evaluation of approaches, coupling ocean and atmosphere models, thermodynamic compatibility between model components, and emerging issues such as those that arise as model resolutions increase and/or models use variable resolutions.
Abstract
During the presummer rainy season (April–June), southern China often experiences frequent occurrences of extreme rainfall, leading to severe flooding and inundations. To expedite the efforts in improving the quantitative precipitation forecast (QPF) of the presummer rainy season rainfall, the China Meteorological Administration (CMA) initiated a nationally coordinated research project, namely, the Southern China Monsoon Rainfall Experiment (SCMREX) that was endorsed by the World Meteorological Organization (WMO) as a research and development project (RDP) of the World Weather Research Programme (WWRP). The SCMREX RDP (2013–18) consists of four major components: field campaign, database management, studies on physical mechanisms of heavy rainfall events, and convection-permitting numerical experiments including impact of data assimilation, evaluation/improvement of model physics, and ensemble prediction. The pilot field campaigns were carried out from early May to mid-June of 2013–15. This paper: i) describes the scientific objectives, pilot field campaigns, and data sharing of SCMREX; ii) provides an overview of heavy rainfall events during the SCMREX-2014 intensive observing period; and iii) presents examples of preliminary research results and explains future research opportunities.
Abstract
During the presummer rainy season (April–June), southern China often experiences frequent occurrences of extreme rainfall, leading to severe flooding and inundations. To expedite the efforts in improving the quantitative precipitation forecast (QPF) of the presummer rainy season rainfall, the China Meteorological Administration (CMA) initiated a nationally coordinated research project, namely, the Southern China Monsoon Rainfall Experiment (SCMREX) that was endorsed by the World Meteorological Organization (WMO) as a research and development project (RDP) of the World Weather Research Programme (WWRP). The SCMREX RDP (2013–18) consists of four major components: field campaign, database management, studies on physical mechanisms of heavy rainfall events, and convection-permitting numerical experiments including impact of data assimilation, evaluation/improvement of model physics, and ensemble prediction. The pilot field campaigns were carried out from early May to mid-June of 2013–15. This paper: i) describes the scientific objectives, pilot field campaigns, and data sharing of SCMREX; ii) provides an overview of heavy rainfall events during the SCMREX-2014 intensive observing period; and iii) presents examples of preliminary research results and explains future research opportunities.