Search Results

You are looking at 11 - 14 of 14 items for

  • Author or Editor: J. C. Ballard x
  • Refine by Access: All Content x
Clear All Modify Search
B. W. Golding, S. P. Ballard, K. Mylne, N. Roberts, A. Saulter, C. Wilson, P. Agnew, L. S. Davis, J. Trice, C. Jones, D. Simonin, Z. Li, C. Pierce, A. Bennett, M. Weeks, and S. Moseley

The provision of weather forecasts for the London Olympic and Paralympic Games in 2012 offered the opportunity for the Met Office to accelerate the transition to operations of several advanced numerical modeling capabilities and to demonstrate their performance to external scientists. It was also an event that captured public interest, providing an opportunity to educate and build trust in the weather forecasting enterprise in the United Kingdom and beyond. The baseline NWP guidance for the duration of the Olympic Games came from three main configurations of the Met Office Unified Model: global 25-km deterministic, North Atlantic/Europe 18-km ensemble, and U.K. 1.5-km deterministic. The advanced capabilities demonstrated during the Olympic Games consisted of a rapid-update hourly cycle of a 1.5-km grid length configuration for the southern United Kingdom using four-dimensional variational data assimilation (4D-Var) and enhanced observations; a 2.2-km grid length U.K. ensemble; a 333-m grid length configuration of the Unified Model and 250-m configuration of the Simulating Waves Nearshore (SWAN) ocean wave model for Weymouth Bay; and a 12-km grid length configuration of Air Quality in the Unified Model with prognostic aerosols and chemistry. Despite their different levels of maturity, each of the new capabilities provided useful additional guidance to Met Office weather advisors, contributing to an outstanding service to the Olympic Games organizers and the public. The website provided layered access to information about the science and to selected real-time products, substantially raising the profile of Met Office weather forecasting research among the United Kingdom and overseas public.

Full access
G. Vaughan, J. Methven, D. Anderson, B. Antonescu, L. Baker, T. P. Baker, S. P. Ballard, K. N. Bower, P. R. A. Brown, J. Chagnon, T. W. Choularton, J. Chylik, P. J. Connolly, P. A. Cook, R. J. Cotton, J. Crosier, C. Dearden, J. R. Dorsey, T. H. A. Frame, M. W. Gallagher, M. Goodliff, S. L. Gray, B. J. Harvey, P. Knippertz, H. W. Lean, D. Li, G. Lloyd, O. Martínez–Alvarado, J. Nicol, J. Norris, E. Öström, J. Owen, D. J. Parker, R. S. Plant, I. A. Renfrew, N. M. Roberts, P. Rosenberg, A. C. Rudd, D. M. Schultz, J. P. Taylor, T. Trzeciak, R. Tubbs, A. K. Vance, P. J. van Leeuwen, A. Wellpott, and A. Woolley

Abstract

The Diabatic Influences on Mesoscale Structures in Extratropical Storms (DIAMET) project aims to improve forecasts of high-impact weather in extratropical cyclones through field measurements, high-resolution numerical modeling, and improved design of ensemble forecasting and data assimilation systems. This article introduces DIAMET and presents some of the first results. Four field campaigns were conducted by the project, one of which, in late 2011, coincided with an exceptionally stormy period marked by an unusually strong, zonal North Atlantic jet stream and a succession of severe windstorms in northwest Europe. As a result, December 2011 had the highest monthly North Atlantic Oscillation index (2.52) of any December in the last 60 years. Detailed observations of several of these storms were gathered using the U.K.’s BAe 146 research aircraft and extensive ground-based measurements. As an example of the results obtained during the campaign, observations are presented of Extratropical Cyclone Friedhelm on 8 December 2011, when surface winds with gusts exceeding 30 m s–1 crossed central Scotland, leading to widespread disruption to transportation and electricity supply. Friedhelm deepened 44 hPa in 24 h and developed a pronounced bent-back front wrapping around the storm center. The strongest winds at 850 hPa and the surface occurred in the southern quadrant of the storm, and detailed measurements showed these to be most intense in clear air between bands of showers. High-resolution ensemble forecasts from the Met Office showed similar features, with the strongest winds aligned in linear swaths between the bands, suggesting that there is potential for improved skill in forecasts of damaging winds.

Open access
David C. Leon, Jeffrey R. French, Sonia Lasher-Trapp, Alan M. Blyth, Steven J. Abel, Susan Ballard, Andrew Barrett, Lindsay J. Bennett, Keith Bower, Barbara Brooks, Phil Brown, Cristina Charlton-Perez, Thomas Choularton, Peter Clark, Chris Collier, Jonathan Crosier, Zhiqiang Cui, Seonaid Dey, David Dufton, Chloe Eagle, Michael J. Flynn, Martin Gallagher, Carol Halliwell, Kirsty Hanley, Lee Hawkness-Smith, Yahui Huang, Graeme Kelly, Malcolm Kitchen, Alexei Korolev, Humphrey Lean, Zixia Liu, John Marsham, Daniel Moser, John Nicol, Emily G. Norton, David Plummer, Jeremy Price, Hugo Ricketts, Nigel Roberts, Phil D. Rosenberg, David Simonin, Jonathan W. Taylor, Robert Warren, Paul I. Williams, and Gillian Young

Abstract

The Convective Precipitation Experiment (COPE) was a joint U.K.–U.S. field campaign held during the summer of 2013 in the southwest peninsula of England, designed to study convective clouds that produce heavy rain leading to flash floods. The clouds form along convergence lines that develop regularly as a result of the topography. Major flash floods have occurred in the past, most famously at Boscastle in 2004. It has been suggested that much of the rain was produced by warm rain processes, similar to some flash floods that have occurred in the United States. The overarching goal of COPE is to improve quantitative convective precipitation forecasting by understanding the interactions of the cloud microphysics and dynamics and thereby to improve numerical weather prediction (NWP) model skill for forecasts of flash floods. Two research aircraft, the University of Wyoming King Air and the U.K. BAe 146, obtained detailed in situ and remote sensing measurements in, around, and below storms on several days. A new fast-scanning X-band dual-polarization Doppler radar made 360° volume scans over 10 elevation angles approximately every 5 min and was augmented by two Met Office C-band radars and the Chilbolton S-band radar. Detailed aerosol measurements were made on the aircraft and on the ground. This paper i) provides an overview of the COPE field campaign and the resulting dataset, ii) presents examples of heavy convective rainfall in clouds containing ice and also in relatively shallow clouds through the warm rain process alone, and iii) explains how COPE data will be used to improve high-resolution NWP models for operational use.

Full access
Keith A. Browning, Alan M. Blyth, Peter A. Clark, Ulrich Corsmeier, Cyril J. Morcrette, Judith L. Agnew, Sue P. Ballard, Dave Bamber, Christian Barthlott, Lindsay J. Bennett, Karl M. Beswick, Mark Bitter, Karen E. Bozier, Barbara J. Brooks, Chris G. Collier, Fay Davies, Bernhard Deny, Mark A. Dixon, Thomas Feuerle, Richard M. Forbes, Catherine Gaffard, Malcolm D. Gray, Rolf Hankers, Tim J. Hewison, Norbert Kalthoff, Samiro Khodayar, Martin Kohler, Christoph Kottmeier, Stephan Kraut, Michael Kunz, Darcy N. Ladd, Humphrey W. Lean, Jürgen Lenfant, Zhihong Li, John Marsham, James McGregor, Stephan D. Mobbs, John Nicol, Emily Norton, Douglas J. Parker, Felicity Perry, Markus Ramatschi, Hugo M. A. Ricketts, Nigel M. Roberts, Andrew Russell, Helmut Schulz, Elizabeth C. Slack, Geraint Vaughan, Joe Waight, David P. Wareing, Robert J. Watson, Ann R. Webb, and Andreas Wieser

The Convective Storm Initiation Project (CSIP) is an international project to understand precisely where, when, and how convective clouds form and develop into showers in the mainly maritime environment of southern England. A major aim of CSIP is to compare the results of the very high resolution Met Office weather forecasting model with detailed observations of the early stages of convective clouds and to use the newly gained understanding to improve the predictions of the model.

A large array of ground-based instruments plus two instrumented aircraft, from the U.K. National Centre for Atmospheric Science (NCAS) and the German Institute for Meteorology and Climate Research (IMK), Karlsruhe, were deployed in southern England, over an area centered on the meteorological radars at Chilbolton, during the summers of 2004 and 2005. In addition to a variety of ground-based remote-sensing instruments, numerous rawinsondes were released at one- to two-hourly intervals from six closely spaced sites. The Met Office weather radar network and Meteosat satellite imagery were used to provide context for the observations made by the instruments deployed during CSIP.

This article presents an overview of the CSIP field campaign and examples from CSIP of the types of convective initiation phenomena that are typical in the United Kingdom. It shows the way in which certain kinds of observational data are able to reveal these phenomena and gives an explanation of how the analyses of data from the field campaign will be used in the development of an improved very high resolution NWP model for operational use.

Full access