Search Results

You are looking at 11 - 20 of 22 items for

  • Author or Editor: J. M. Austin x
  • Refine by Access: All Content x
Clear All Modify Search
C. M. R. Platt, R. T. Austin, S. A. Young, and A. J. Heymsfield

Abstract

During the Maritime Continent Thunderstorm Experiment (MCTEX), several decaying storm anvils were observed. The anvil clouds exhibited typical patterns of fallout and decay over a number of hours of observation. The anvil bases were initially very attenuating to lidar pulses, and continued that way until anvil breakup commenced. During that time, the anvil base reached some characteristic altitude (∼7 km) below which the cloud particles had evaporated fully. Some typical “tongues” of fallout below such levels also occurred. Millimeter radar showed the storm anvil cloud tops to be much higher than detected by lidar until the anvil was well dissipated.

The infrared properties of the anvils were calculated. In three of the four anvils studied, the calculated emittance never exceeded 0.8–0.85. In the remaining case, the cloud emittance approached unity only in the period before the anvil had descended appreciably. Radiative transfer calculations showed that the infrared emission originated mostly from the layer between cloud base and the height at which complete attenuation of the lidar pulse occurred. However, the correct blackbody emission at cloud base could only be obtained by assuming the existence of an additional layer, situated above the first, 1.8 km deep and with a specific backscatter coefficient. The depressed values of emittance were interpreted as a cooling (below those temperatures measured by radiosonde) for some distance above anvil cloud base due to evaporation of the cloud. Typically, this cooling amounted to about 10°C, depending on the layer thickness above cloud base at which cooling was occurring. A reexamination of data taken in 1981 at Darwin, Northern Territory, Australia, indicated a similar depression in emittance in all cases of attenuating storm anvils. A simple model of ice-mass evaporation saturating the ambient air was used to approximate the observed cooling in one anvil. Millimeter radar reflectivity measurements, which also yielded ice water content at cloud base, were also used to find equivalent cooling rates. By varying the mean volume diameter in the calculation, cooling rates similar to those found from the radiometric method could be obtained. The values of mean volume diameter agreed, within uncertainties, with those obtained by the lidar–radar method. Estimated cooling to over 1 km above cloud base confirms earlier work on anvil mammata. Values of backscatter-to-extinction ratio at the base of the anvils showed some consistent variations, indicating a change of ice-crystal habit, or size, with time.

Full access
Peter R. Oke, J. S. Allen, R. N. Miller, G. D. Egbert, J. A. Austin, J. A. Barth, T. J. Boyd, P. M. Kosro, and M. D. Levine

Abstract

Sixty-day simulations of the subinertial continental shelf circulation off Oregon are performed for a hindcast study of summer 1999. Model results are compared with in situ currents, high-frequency radar–derived surface currents, and hydrographic measurements obtained from an array of moored instruments and field surveys. The correlations between observed and modeled alongshore currents and temperatures in water depths of 50 m are in excess of 0.8. A study designed to test the model's sensitivity to different initial stratification, surface forcing, domain size, and river forcing demonstrates that surface heating is important, and that the model results are sensitive to initial stratification. An objective criterion for assessing the skill of a model simulation relative to a control simulation is outlined, providing an objective means for identifying the best model simulation. The model–data comparisons demonstrate that temperature fluctuations off Newport are primarily in response to surface heating and that subsurface density fluctuations are controlled by the wind-forced circulation through salinity. Experiments with river forcing indicate that, in the vicinity of Newport, the Columbia River plume is typically greater than 15 km from the coast and is confined to the top few meters of the water column. Additionally, the model–data comparisons suggest that the strongest upwelling occurs to the north of Newport where the continental shelf is relatively narrow and uniform in the alongshore direction. Part II of this study investigates the modeled three-dimensional circulation and dynamical balances.

Full access
C. M. R. Platt, S. A. Young, P. J. Manson, G. R. Patterson, S. C. Marsden, R. T. Austin, and J. H. Churnside

Abstract

The optical properties of equatorial cirrus were studied during a three-week period of the ARM Pilot Radiation and Observation Experiment at Kavieng, Papua New Guinea, in January and February 1993. The experiment consisted of vertical lidar (532 nm) and passive infrared filter radiometer (10.84 μm) observations of cirrus clouds. The observations gave values of cloud height, depth, structure, infrared emittance, infrared absorption, and visible optical depth and linear depolarization ratio. A standard lidar–radiometer analysis, with some improvements, was used to calculate these quantities. The cirrus was found to vary in altitude from a maximum cloud top of 17.6 km to a minimum cloud base of 6 km with equivalent temperatures of −82°C to −7°C respectively. The cirrus also varied widely in depth (0.7 to 7.5 km). The mean emittance (for each temperature interval) of the cooler clouds was found to be higher than that observed previously at tropical and midlatitude sites and at equivalent temperatures. The mean infrared absorption coefficients were similar to those of midlatitude clouds, except at the extreme temperature ranges, but were higher than those observed in tropical synoptic clouds over Darwin. Infrared optical depths varied from 0.01 to 2.4 and visible optical depths from 0.01 to 8.6.

Plots of integrated attenuated backscatter versus infrared emittance, for various ranges of cloud temperature, showed characteristic behavior. Values of the measured quantity k/2η, where k is the visible backscatter to extinction ratio and η a multiple scattering factor, were found to increase with temperature from 0.14 at −70°C to 0.30 at −20°C.

Values of the quantity 2αη, where α is the ratio of visible extinction to infrared absorption coefficient, varied from about 1.7 to 3.8, depending somewhat on the cloud temperature. Deduced values of α were as high as 5.3 at the lower temperature ranges, indicating smaller particles.

The lidar integrated attenuated depolarization ratio Δ decreased with temperature, as found previously in midlatitude cirrus. Values of Δ varied from 0.42 at −70°C to 0.18 at −10°C. Data obtained from the NOAA/ETL microwave radiometer gave values of water path, varying from 4 to 6 cm precipitable water. A value of the water vapor continuum absorption coefficient at 10.84 μm equal to 9.0 ± 0.5 g−1 cm2 atm−1 was obtained in agreement with previous observations.

Full access
V. Eyring, N. R. P. Harris, M. Rex, T. G. Shepherd, D. W. Fahey, G. T. Amanatidis, J. Austin, M. P. Chipperfield, M. Dameris, P. M. De F. Forster, A. Gettelman, H. F. Graf, T. Nagashima, P. A. Newman, S. Pawson, M. J. Prather, J. A. Pyle, R. J. Salawitch, B. D. Santer, and D. W. Waugh

Accurate and reliable predictions and an understanding of future changes in the stratosphere are major aspects of the subject of climate change. Simulating the interaction between chemistry and climate is of particular importance, because continued increases in greenhouse gases and a slow decrease in halogen loading are expected. These both influence the abundance of stratospheric ozone. In recent years a number of coupled chemistry–climate models (CCMs) with different levels of complexity have been developed. They produce a wide range of results concerning the timing and extent of ozone-layer recovery. Interest in reducing this range has created a need to address how the main dynamical, chemical, and physical processes that determine the long-term behavior of ozone are represented in the models and to validate these model processes through comparisons with observations and other models. A set of core validation processes structured around four major topics (transport, dynamics, radiation, and stratospheric chemistry and microphysics) has been developed. Each process is associated with one or more model diagnostics and with relevant datasets that can be used for validation. This approach provides a coherent framework for validating CCMs and can be used as a basis for future assessments. Similar efforts may benefit other modeling communities with a focus on earth science research as their models increase in complexity.

Full access
D. S. Wratt, R. N. Ridley, M. R. Sinclair, H. Larsen, S. M. Thompson, R. Henderson, G. L. Austin, S. G. Bradley, A. Auer, A. P. Sturman, I. Owens, B. Fitzharris, B. F. Ryan, and J.-F. Gayet

The Southern Alps Experiment is being mounted to study the influence of New Zealand's Southern Alps on local weather and climate. This paper describes these alpine influences and outlines proposed field and modeling experiments. Experiment goals include understanding and quantifying factors that govern the intensity and spatial distribution of heavy rainfall, the west to east distribution of precipitation across the mountains, and the intensity of lee wind storms and warming. Linked research will explore the use of deterministic rainfall models to predict river flows from mountain watersheds.

Full access
D. D. Turner, A. M. Vogelmann, R. T. Austin, J. C. Barnard, K. Cady-Pereira, J. C. Chiu, S. A. Clough, C. Flynn, M. M. Khaiyer, J. Liljegren, K. Johnson, B. Lin, C. Long, A. Marshak, S. Y. Matrosov, S. A. McFarlane, M. Miller, Q. Min, P. Minimis, W. O'Hirok, Z. Wang, and W. Wiscombe

Many of the clouds important to the Earth's energy balance, from the Tropics to the Arctic, contain small amounts of liquid water. Longwave and shortwave radiative fluxes are very sensitive to small perturbations of the cloud liquid water path (LWP), when the LWP is small (i.e., < 100 g m−2; clouds with LWP less than this threshold will be referred to as “thin”). Thus, the radiative properties of these thin liquid water clouds must be well understood to capture them correctly in climate models. We review the importance of these thin clouds to the Earth's energy balance, and explain the difficulties in observing them. In particular, because these clouds are thin, potentially mixed phase, and often broken (i.e., have large 3D variability), it is challenging to retrieve their microphysical properties accurately. We describe a retrieval algorithm intercomparison that was conducted to evaluate the issues involved. The intercomparison used data collected at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site and included 18 different algorithms to evaluate their retrieved LWP, optical depth, and effective radii. Surprisingly, evaluation of the simplest case, a single-layer overcast stratocumulus, revealed that huge discrepancies exist among the various techniques, even among different algorithms that are in the same general classification. This suggests that, despite considerable advances that have occurred in the field, much more work must be done, and we discuss potential avenues for future research.)

Full access
Leo J. Donner, Bruce L. Wyman, Richard S. Hemler, Larry W. Horowitz, Yi Ming, Ming Zhao, Jean-Christophe Golaz, Paul Ginoux, S.-J. Lin, M. Daniel Schwarzkopf, John Austin, Ghassan Alaka, William F. Cooke, Thomas L. Delworth, Stuart M. Freidenreich, C. T. Gordon, Stephen M. Griffies, Isaac M. Held, William J. Hurlin, Stephen A. Klein, Thomas R. Knutson, Amy R. Langenhorst, Hyun-Chul Lee, Yanluan Lin, Brian I. Magi, Sergey L. Malyshev, P. C. D. Milly, Vaishali Naik, Mary J. Nath, Robert Pincus, Jeffrey J. Ploshay, V. Ramaswamy, Charles J. Seman, Elena Shevliakova, Joseph J. Sirutis, William F. Stern, Ronald J. Stouffer, R. John Wilson, Michael Winton, Andrew T. Wittenberg, and Fanrong Zeng

Abstract

The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol–cloud interactions, chemistry–climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future—for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth’s surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupled mode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of the twentieth century warm in CM3 by 0.32°C relative to 1881–1920. The Climate Research Unit (CRU) and Goddard Institute for Space Studies analyses of observations show warming of 0.56° and 0.52°C, respectively, over this period. CM3 includes anthropogenic cooling by aerosol–cloud interactions, and its warming by the late twentieth century is somewhat less realistic than in CM2.1, which warmed 0.66°C but did not include aerosol–cloud interactions. The improved simulation of the direct aerosol effect (apparent in surface clear-sky downward radiation) in CM3 evidently acts in concert with its simulation of cloud–aerosol interactions to limit greenhouse gas warming.

Full access
Neal Butchart, I. Cionni, V. Eyring, T. G. Shepherd, D. W. Waugh, H. Akiyoshi, J. Austin, C. Brühl, M. P. Chipperfield, E. Cordero, M. Dameris, R. Deckert, S. Dhomse, S. M. Frith, R. R. Garcia, A. Gettelman, M. A. Giorgetta, D. E. Kinnison, F. Li, E. Mancini, C. McLandress, S. Pawson, G. Pitari, D. A. Plummer, E. Rozanov, F. Sassi, J. F. Scinocca, K. Shibata, B. Steil, and W. Tian

Abstract

The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry–climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 ± 0.07 K decade−1 at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 K decade−1 at 100 hPa as the rate of recovery declines from the first to the second half of the century. In the winter northern polar lower stratosphere the increased radiative cooling from the growing abundance of GHGs is, in most models, balanced by adiabatic warming from stronger polar downwelling. In the Antarctic lower stratosphere the models simulate an increase in low temperature extremes required for polar stratospheric cloud (PSC) formation, but the positive trend is decreasing over the twenty-first century in all models. In the Arctic, none of the models simulates a statistically significant increase in Arctic PSCs throughout the twenty-first century. The subtropical jets accelerate in response to climate change and the ozone recovery produces a westward acceleration of the lower-stratospheric wind over the Antarctic during summer, though this response is sensitive to the rate of recovery projected by the models. There is a strengthening of the Brewer–Dobson circulation throughout the depth of the stratosphere, which reduces the mean age of air nearly everywhere at a rate of about 0.05 yr decade−1 in those models with this diagnostic. On average, the annual mean tropical upwelling in the lower stratosphere (∼70 hPa) increases by almost 2% decade−1, with 59% of this trend forced by the parameterized orographic gravity wave drag in the models. This is a consequence of the eastward acceleration of the subtropical jets, which increases the upward flux of (parameterized) momentum reaching the lower stratosphere in these latitudes.

Full access
Rolf H. Reichle, Gabrielle J. M. De Lannoy, Qing Liu, Randal D. Koster, John S. Kimball, Wade T. Crow, Joseph V. Ardizzone, Purnendu Chakraborty, Douglas W. Collins, Austin L. Conaty, Manuela Girotto, Lucas A. Jones, Jana Kolassa, Hans Lievens, Robert A. Lucchesi, and Edmond B. Smith

Abstract

The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0–5 cm) and root-zone (0–100 cm) soil moisture and related land surface variables from 31 March 2015 to present with ~2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (OF) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of ~0.37 K for the OF Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the OF residuals (under ~3 K), the soil moisture increments (under ~0.01 m3 m−3), and the surface soil temperature increments (under ~1 K). Typical instantaneous values are ~6 K for OF residuals, ~0.01 (~0.003) m3 m−3 for surface (root zone) soil moisture increments, and ~0.6 K for surface soil temperature increments. The OF diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The OF autocorrelations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.

Full access
Michele M. Rienecker, Max J. Suarez, Ronald Gelaro, Ricardo Todling, Julio Bacmeister, Emily Liu, Michael G. Bosilovich, Siegfried D. Schubert, Lawrence Takacs, Gi-Kong Kim, Stephen Bloom, Junye Chen, Douglas Collins, Austin Conaty, Arlindo da Silva, Wei Gu, Joanna Joiner, Randal D. Koster, Robert Lucchesi, Andrea Molod, Tommy Owens, Steven Pawson, Philip Pegion, Christopher R. Redder, Rolf Reichle, Franklin R. Robertson, Albert G. Ruddick, Meta Sienkiewicz, and Jack Woollen

Abstract

The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given.

By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF Re-Analysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses in many aspects of climate variability, substantial differences remain in poorly constrained quantities such as precipitation and surface fluxes. These differences, due to variations both in the models and in the analysis techniques, are an important measure of the uncertainty in reanalysis products. It is also found that all reanalyses are still quite sensitive to observing system changes. Dealing with this sensitivity remains the most pressing challenge for the next generation of reanalyses.

Production has now caught up to the current period and MERRA is being continued as a near-real-time climate analysis. The output is available online through the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC).

Full access