Search Results

You are looking at 11 - 16 of 16 items for

  • Author or Editor: J. M. Rosen x
  • Refine by Access: All Content x
Clear All Modify Search
P. B. Russell, M. P. McCormick, T. J. Swissler, J. M. Rosen, D. J. Hofmann, and L. R. McMaster

Abstract

A large satellite validation experiment was conducted at Poker Flat, Alaska, 16–19 July 1979. Instruments included the SAM II and SAGE satellite sensors, dustsondes impactors, a fitter collector and an airborne lidar. We show that the extinction profiles that were measured independently by SAM II and SAGE agree with each other. We then use a generalized optical model (which agrees with the Poker Flat optical absorption and relative size distribution measurements) to derive extinction profiles from the other measurements. Extinction profiles thus derived from the dustsonde, fitter and lidar measurements agree with the satellite-measured extinction profiles to within the combined uncertainties. (Individual 1 σ uncertainties are, at most heights, roughly 7 to 20% each for the satellite, dustsonde and filter measurements, 30 to 60% for the lidar measurements, and 10 to 20% for the process of converting one measured parameter to another using the optical model.)

The wire impactor-derived results are also consistent with the other results, but the comparison is coarse because of the relatively large uncertainties (±35% to a factor of 4) in impactor-derived mass, extinction, N 0.15 and N 0.25 (Nx is the number of particles per unit volume with radius greater than x μm.) These uncertainties apply to background stratospheric aerosol size distributions, and result primarily from relatively small uncertainties (±8 to ±20% for confidence limits of 95%) in radii assigned to impacted particles, combined with the steepness of background size distributions in the radius range that contributes most to mass, extinction, N 0.15 and N 0.25. Polar nephelometer-measured asymmetry parameters (0.4 to 0.6) agree with a previous balloon photometer inference, but are significantly less than the value (∼0.7) obtained from Mie scattering calculations assuming either model or measured size distributions.

Full access
David A. Salstein, Deirdre M. Kann, Alvin J. Miller, and Richard D. Rosen

By exchanging angular momentum with the solid portion of the earth, the atmosphere plays a vital role in exciting small but measurable changes in the rotation of our planet. Recognizing this relationship, the International Earth Rotation Service invited the U.S. National Meteorological Center to organize a Sub-bureau for Atmospheric Angular Momentum (SBAAM) for the purpose of collecting, distributing, archiving, and analyzing atmospheric parameters relevant to earth rotation/polar motion. These functions of wind and surface pressure are being computed with data from several of the world's weather services, and they are being widely applied to the research and operations of the geodetic community. The SBAAM began operating formally in October 1989, and this article highlights its development, operations, and significance.

Full access
Richard D. Cadle, Gerhard Langer, J. B. Haberl, A. Hogan, James M. Rosen, William A. Sedlacek, and J. Wegrzyn

Abstract

Laboratory comparisons have been made of aerosol concentrations indicated by four different types of condensation nucleus counters. Three of these counters, the Langer, Rosen, and General Electric SANDS instruments have been used to measure Aitken nuclei concentrations in the upper troposphere and the stratosphere, and the fourth, a Pollak counter, had been carefully calibrated to serve as a standard. Except for the smallest particles employed, quite good agreement was experienced among the Rosen, SANDS and Pollak counters, and the tests served to calibrate the Langer instrument.

Full access
G. Beyerle, M. R. Gross, D. A. Haner, N. T. Kjome, I. S. McDermid, T. J. McGee, J. M. Rosen, H.-J. Schäfer, and O. Schrems

Abstract

Results from a measurement campaign performed at Table Mountain Facility/Jet Propulsion Laboratory/California Institute of Technology (34.38°N, 117.68°W, 2280 m ASL) are presented. Between 19 February and 18 March 1997 more than 400 h worth of lidar data were acquired and four backscatter sondes were launched. About 50% of the observations show the presence of cirrus clouds at altitudes close to and below the tropopause. Of these clouds 80% are characterized as subvisual with optical depths below 0.03 at a wavelength of 532 nm. Simple geometrical considerations lead to cloud spatial scales of 0.31 km vertically and 7.5 km horizontally, respectively. Deviations from color ratio values derived on the basis of geometrical optics are interpreted as small particle signatures. Comparing backscatter ratio profiles observed concurrently by three aerosol lidars, mean deviations of about 10% are found.

Full access
P.B. Russell, M.P. McCormick, T.J. Swissler, W.P. Chu, J.M. Livingston, W.H. Fuller, J.M. Rosen, D.J. Hofmann, L.R. McMaster, D.C. Woods, and T.J. Pepin

Abstract

We show results from the first set of measurements conducted to validate extinction data from the satellite sensor SAM II. Dustsonde-measured number density profiles and lidar-measured backscattering profiles for two days are converted to extinction profiles using the optical modeling techniques described in the companion Paper I (Russell et al., 1981). At heights ∼2 km and more above the tropopause, the dustsonde data are used to restrict the range of model size distributions, thus reducing uncertainties in the conversion process. At all heights, measurement uncertainties for each sensor are evaluated, and these are combined with conversion uncertainties to yield the total uncertainty in derived data profiles.

The SAM II measured, dustsonde-inferred, and lidar-inferred extinction profiles for both days are shown to agree within their respective uncertainties at all heights above the tropopause. Near the tropopause, this agreement depends on the use of model size distributions with more relatively large particles (radius ≳0.6 μm) than are present in distributions used to model the main stratospheric aerosol peak. The presence of these relatively large particles is supported by measurements made elsewhere and is suggested by in situ size distribution measurements reported here. These relatively large particles near the tropopause are likely to have an important bearing on the radiative impact of the total stratospheric aerosol.

The agreement in this experiment supports the validity of the SAM II extinction data and the SAM II uncertainty estimates derived from an independent error analysis. Recommendations are given for reducing the uncertainties of future correlative experiments.

Full access
EXECUTIVE COMMITTEE, Robert J. Serafin, Richard D. Rosen, James F. Kimpel, George L. Frederick Jr., Anne Thompson, Mary M. Glackin, Kenneth C. Spengler, and Ronald D. McPherson
Full access