Search Results
You are looking at 11 - 20 of 21 items for :
- Author or Editor: J. S. Hall x
- Article x
- Refine by Access: All Content x
Abstract
The Operational Multiscale Environment Model with Grid Adaptivity (OMEGA) and its embedded Atmospheric Dispersion Model is a new atmospheric simulation system for real-time hazard prediction, conceived out of a need to advance the state of the art in numerical weather prediction in order to improve the capability to predict the transport and diffusion of hazardous releases. OMEGA is based upon an unstructured grid that makes possible a continuously varying horizontal grid resolution ranging from 100 km down to 1 km and a vertical resolution from a few tens of meters in the boundary layer to 1 km in the free atmosphere. OMEGA is also naturally scale spanning because its unstructured grid permits the addition of grid elements at any point in space and time. In particular, unstructured grid cells in the horizontal dimension can increase local resolution to better capture topography or the important physical features of the atmospheric circulation and cloud dynamics. This means that OMEGA can readily adapt its grid to stationary surface or terrain features, or to dynamic features in the evolving weather pattern. While adaptive numerical techniques have yet to be extensively applied in atmospheric models, the OMEGA model is the first model to exploit the adaptive nature of an unstructured gridding technique for atmospheric simulation and hence real-time hazard prediction. The purpose of this paper is to provide a detailed description of the OMEGA model, the OMEGA system, and a detailed comparison of OMEGA forecast results with data.
Abstract
The Operational Multiscale Environment Model with Grid Adaptivity (OMEGA) and its embedded Atmospheric Dispersion Model is a new atmospheric simulation system for real-time hazard prediction, conceived out of a need to advance the state of the art in numerical weather prediction in order to improve the capability to predict the transport and diffusion of hazardous releases. OMEGA is based upon an unstructured grid that makes possible a continuously varying horizontal grid resolution ranging from 100 km down to 1 km and a vertical resolution from a few tens of meters in the boundary layer to 1 km in the free atmosphere. OMEGA is also naturally scale spanning because its unstructured grid permits the addition of grid elements at any point in space and time. In particular, unstructured grid cells in the horizontal dimension can increase local resolution to better capture topography or the important physical features of the atmospheric circulation and cloud dynamics. This means that OMEGA can readily adapt its grid to stationary surface or terrain features, or to dynamic features in the evolving weather pattern. While adaptive numerical techniques have yet to be extensively applied in atmospheric models, the OMEGA model is the first model to exploit the adaptive nature of an unstructured gridding technique for atmospheric simulation and hence real-time hazard prediction. The purpose of this paper is to provide a detailed description of the OMEGA model, the OMEGA system, and a detailed comparison of OMEGA forecast results with data.
Abstract
Processes in the climate system that can either amplify or dampen the climate response to an external perturbation are referred to as climate feedbacks. Climate sensitivity estimates depend critically on radiative feedbacks associated with water vapor, lapse rate, clouds, snow, and sea ice, and global estimates of these feedbacks differ among general circulation models. By reviewing recent observational, numerical, and theoretical studies, this paper shows that there has been progress since the Third Assessment Report of the Intergovernmental Panel on Climate Change in (i) the understanding of the physical mechanisms involved in these feedbacks, (ii) the interpretation of intermodel differences in global estimates of these feedbacks, and (iii) the development of methodologies of evaluation of these feedbacks (or of some components) using observations. This suggests that continuing developments in climate feedback research will progressively help make it possible to constrain the GCMs’ range of climate feedbacks and climate sensitivity through an ensemble of diagnostics based on physical understanding and observations.
Abstract
Processes in the climate system that can either amplify or dampen the climate response to an external perturbation are referred to as climate feedbacks. Climate sensitivity estimates depend critically on radiative feedbacks associated with water vapor, lapse rate, clouds, snow, and sea ice, and global estimates of these feedbacks differ among general circulation models. By reviewing recent observational, numerical, and theoretical studies, this paper shows that there has been progress since the Third Assessment Report of the Intergovernmental Panel on Climate Change in (i) the understanding of the physical mechanisms involved in these feedbacks, (ii) the interpretation of intermodel differences in global estimates of these feedbacks, and (iii) the development of methodologies of evaluation of these feedbacks (or of some components) using observations. This suggests that continuing developments in climate feedback research will progressively help make it possible to constrain the GCMs’ range of climate feedbacks and climate sensitivity through an ensemble of diagnostics based on physical understanding and observations.
ABSTRACT
Regional climate modeling addresses our need to understand and simulate climatic processes and phenomena unresolved in global models. This paper highlights examples of current approaches to and innovative uses of regional climate modeling that deepen understanding of the climate system. High-resolution models are generally more skillful in simulating extremes, such as heavy precipitation, strong winds, and severe storms. In addition, research has shown that fine-scale features such as mountains, coastlines, lakes, irrigation, land use, and urban heat islands can substantially influence a region’s climate and its response to changing forcings. Regional climate simulations explicitly simulating convection are now being performed, providing an opportunity to illuminate new physical behavior that previously was represented by parameterizations with large uncertainties. Regional and global models are both advancing toward higher resolution, as computational capacity increases. However, the resolution and ensemble size necessary to produce a sufficient statistical sample of these processes in global models has proven too costly for contemporary supercomputing systems. Regional climate models are thus indispensable tools that complement global models for understanding physical processes governing regional climate variability and change. The deeper understanding of regional climate processes also benefits stakeholders and policymakers who need physically robust, high-resolution climate information to guide societal responses to changing climate. Key scientific questions that will continue to require regional climate models, and opportunities are emerging for addressing those questions.
ABSTRACT
Regional climate modeling addresses our need to understand and simulate climatic processes and phenomena unresolved in global models. This paper highlights examples of current approaches to and innovative uses of regional climate modeling that deepen understanding of the climate system. High-resolution models are generally more skillful in simulating extremes, such as heavy precipitation, strong winds, and severe storms. In addition, research has shown that fine-scale features such as mountains, coastlines, lakes, irrigation, land use, and urban heat islands can substantially influence a region’s climate and its response to changing forcings. Regional climate simulations explicitly simulating convection are now being performed, providing an opportunity to illuminate new physical behavior that previously was represented by parameterizations with large uncertainties. Regional and global models are both advancing toward higher resolution, as computational capacity increases. However, the resolution and ensemble size necessary to produce a sufficient statistical sample of these processes in global models has proven too costly for contemporary supercomputing systems. Regional climate models are thus indispensable tools that complement global models for understanding physical processes governing regional climate variability and change. The deeper understanding of regional climate processes also benefits stakeholders and policymakers who need physically robust, high-resolution climate information to guide societal responses to changing climate. Key scientific questions that will continue to require regional climate models, and opportunities are emerging for addressing those questions.
Abstract
Promising new opportunities to apply artificial intelligence (AI) to the Earth and environmental sciences are identified, informed by an overview of current efforts in the community. Community input was collected at the first National Oceanic and Atmospheric Administration (NOAA) workshop on “Leveraging AI in the Exploitation of Satellite Earth Observations and Numerical Weather Prediction” held in April 2019. This workshop brought together over 400 scientists, program managers, and leaders from the public, academic, and private sectors in order to enable experts involved in the development and adaptation of AI tools and applications to meet and exchange experiences with NOAA experts. Paths are described to actualize the potential of AI to better exploit the massive volumes of environmental data from satellite and in situ sources that are critical for numerical weather prediction (NWP) and other Earth and environmental science applications. The main lessons communicated from community input via active workshop discussions and polling are reported. Finally, recommendations are presented for both scientists and decision-makers to address some of the challenges facing the adoption of AI across all Earth science.
Abstract
Promising new opportunities to apply artificial intelligence (AI) to the Earth and environmental sciences are identified, informed by an overview of current efforts in the community. Community input was collected at the first National Oceanic and Atmospheric Administration (NOAA) workshop on “Leveraging AI in the Exploitation of Satellite Earth Observations and Numerical Weather Prediction” held in April 2019. This workshop brought together over 400 scientists, program managers, and leaders from the public, academic, and private sectors in order to enable experts involved in the development and adaptation of AI tools and applications to meet and exchange experiences with NOAA experts. Paths are described to actualize the potential of AI to better exploit the massive volumes of environmental data from satellite and in situ sources that are critical for numerical weather prediction (NWP) and other Earth and environmental science applications. The main lessons communicated from community input via active workshop discussions and polling are reported. Finally, recommendations are presented for both scientists and decision-makers to address some of the challenges facing the adoption of AI across all Earth science.
Abstract
The prediction of tropical cyclone rapid intensification is one of the most pressing unsolved problems in hurricane forecasting. The signatures of gravity waves launched by strong convective updrafts are often clearly seen in airglow and carbon dioxide thermal emission spectra under favorable atmospheric conditions. By continuously monitoring the Atlantic hurricane belt from the main development region to the vulnerable sections of the continental United States at high cadence, it will be possible to investigate the utility of storm-induced gravity wave observations for the diagnosis of impending storm intensification. Such a capability would also enable significant improvements in our ability to characterize the 3D transient behavior of upper-atmospheric gravity waves and point the way to future observing strategies that could mitigate the risk to human life caused by severe storms. This paper describes a new mission concept involving a midinfrared imager hosted aboard a geostationary satellite positioned at approximately 80°W longitude. The sensor’s 3-km pixel size ensures that the gravity wave horizontal structure is adequately resolved, while a 30-s refresh rate enables improved definition of the dynamic intensification process. In this way the transient development of gravity wave perturbations caused by both convective and cyclonic storms may be discerned in near–real time.
Abstract
The prediction of tropical cyclone rapid intensification is one of the most pressing unsolved problems in hurricane forecasting. The signatures of gravity waves launched by strong convective updrafts are often clearly seen in airglow and carbon dioxide thermal emission spectra under favorable atmospheric conditions. By continuously monitoring the Atlantic hurricane belt from the main development region to the vulnerable sections of the continental United States at high cadence, it will be possible to investigate the utility of storm-induced gravity wave observations for the diagnosis of impending storm intensification. Such a capability would also enable significant improvements in our ability to characterize the 3D transient behavior of upper-atmospheric gravity waves and point the way to future observing strategies that could mitigate the risk to human life caused by severe storms. This paper describes a new mission concept involving a midinfrared imager hosted aboard a geostationary satellite positioned at approximately 80°W longitude. The sensor’s 3-km pixel size ensures that the gravity wave horizontal structure is adequately resolved, while a 30-s refresh rate enables improved definition of the dynamic intensification process. In this way the transient development of gravity wave perturbations caused by both convective and cyclonic storms may be discerned in near–real time.
Abstract
The Bay of Bengal (BoB) plays a fundamental role in controlling the weather systems that make up the South Asian summer monsoon system. In particular, the southern BoB has cooler sea surface temperatures (SST) that influence ocean–atmosphere interaction and impact the monsoon. Compared to the southeastern BoB, the southwestern BoB is cooler, more saline, receives much less rain, and is influenced by the summer monsoon current (SMC). To examine the impact of these features on the monsoon, the BoB Boundary Layer Experiment (BoBBLE) was jointly undertaken by India and the United Kingdom during June–July 2016. Physical and biogeochemical observations were made using a conductivity–temperature–depth (CTD) profiler, five ocean gliders, an Oceanscience Underway CTD (uCTD), a vertical microstructure profiler (VMP), two acoustic Doppler current profilers (ADCPs), Argo floats, drifting buoys, meteorological sensors, and upper-air radiosonde balloons. The observations were made along a zonal section at 8°N between 85.3° and 89°E with a 10-day time series at 8°N, 89°E. This paper presents the new observed features of the southern BoB from the BoBBLE field program, supported by satellite data. Key results from the BoBBLE field campaign show the Sri Lanka dome and the SMC in different stages of their seasonal evolution and two freshening events during which salinity decreased in the upper layer, leading to the formation of thick barrier layers. BoBBLE observations were taken during a suppressed phase of the intraseasonal oscillation; they captured in detail the warming of the ocean mixed layer and the preconditioning of the atmosphere to convection.
Abstract
The Bay of Bengal (BoB) plays a fundamental role in controlling the weather systems that make up the South Asian summer monsoon system. In particular, the southern BoB has cooler sea surface temperatures (SST) that influence ocean–atmosphere interaction and impact the monsoon. Compared to the southeastern BoB, the southwestern BoB is cooler, more saline, receives much less rain, and is influenced by the summer monsoon current (SMC). To examine the impact of these features on the monsoon, the BoB Boundary Layer Experiment (BoBBLE) was jointly undertaken by India and the United Kingdom during June–July 2016. Physical and biogeochemical observations were made using a conductivity–temperature–depth (CTD) profiler, five ocean gliders, an Oceanscience Underway CTD (uCTD), a vertical microstructure profiler (VMP), two acoustic Doppler current profilers (ADCPs), Argo floats, drifting buoys, meteorological sensors, and upper-air radiosonde balloons. The observations were made along a zonal section at 8°N between 85.3° and 89°E with a 10-day time series at 8°N, 89°E. This paper presents the new observed features of the southern BoB from the BoBBLE field program, supported by satellite data. Key results from the BoBBLE field campaign show the Sri Lanka dome and the SMC in different stages of their seasonal evolution and two freshening events during which salinity decreased in the upper layer, leading to the formation of thick barrier layers. BoBBLE observations were taken during a suppressed phase of the intraseasonal oscillation; they captured in detail the warming of the ocean mixed layer and the preconditioning of the atmosphere to convection.
Abstract
The inner shelf, the transition zone between the surfzone and the midshelf, is a dynamically complex region with the evolution of circulation and stratification driven by multiple physical processes. Cross-shelf exchange through the inner shelf has important implications for coastal water quality, ecological connectivity, and lateral movement of sediment and heat. The Inner-Shelf Dynamics Experiment (ISDE) was an intensive, coordinated, multi-institution field experiment from September–October 2017, conducted from the midshelf, through the inner shelf, and into the surfzone near Point Sal, California. Satellite, airborne, shore- and ship-based remote sensing, in-water moorings and ship-based sampling, and numerical ocean circulation models forced by winds, waves, and tides were used to investigate the dynamics governing the circulation and transport in the inner shelf and the role of coastline variability on regional circulation dynamics. Here, the following physical processes are highlighted: internal wave dynamics from the midshelf to the inner shelf; flow separation and eddy shedding off Point Sal; offshore ejection of surfzone waters from rip currents; and wind-driven subtidal circulation dynamics. The extensive dataset from ISDE allows for unprecedented investigations into the role of physical processes in creating spatial heterogeneity, and nonlinear interactions between various inner-shelf physical processes. Overall, the highly spatially and temporally resolved oceanographic measurements and numerical simulations of ISDE provide a central framework for studies exploring this complex and fascinating region of the ocean.
Abstract
The inner shelf, the transition zone between the surfzone and the midshelf, is a dynamically complex region with the evolution of circulation and stratification driven by multiple physical processes. Cross-shelf exchange through the inner shelf has important implications for coastal water quality, ecological connectivity, and lateral movement of sediment and heat. The Inner-Shelf Dynamics Experiment (ISDE) was an intensive, coordinated, multi-institution field experiment from September–October 2017, conducted from the midshelf, through the inner shelf, and into the surfzone near Point Sal, California. Satellite, airborne, shore- and ship-based remote sensing, in-water moorings and ship-based sampling, and numerical ocean circulation models forced by winds, waves, and tides were used to investigate the dynamics governing the circulation and transport in the inner shelf and the role of coastline variability on regional circulation dynamics. Here, the following physical processes are highlighted: internal wave dynamics from the midshelf to the inner shelf; flow separation and eddy shedding off Point Sal; offshore ejection of surfzone waters from rip currents; and wind-driven subtidal circulation dynamics. The extensive dataset from ISDE allows for unprecedented investigations into the role of physical processes in creating spatial heterogeneity, and nonlinear interactions between various inner-shelf physical processes. Overall, the highly spatially and temporally resolved oceanographic measurements and numerical simulations of ISDE provide a central framework for studies exploring this complex and fascinating region of the ocean.