Search Results

You are looking at 11 - 20 of 21 items for :

  • Author or Editor: Jan D. Zika x
  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All Modify Search
Jan D. Zika
,
Matthew H. England
, and
Willem P. Sijp

Abstract

The thermohaline streamfunction is presented. The thermohaline streamfunction is the integral of transport in temperature–salinity space and represents the net pathway of oceanic water parcels in that space. The thermohaline streamfunction is proposed as a diagnostic to understand the global oceanic circulation and its role in the global movement of heat and freshwater. The coordinate system used filters out adiabatic fluctuations. Physical pathways and ventilation time scales are naturally diagnosed, as are the roles of the mean flow and turbulent fluctuations. Because potential density is a function of temperature and salinity, the framework is naturally isopycnal and is ideal for the diagnosis of water-mass transformations and advective diapycnal heat and freshwater transports. Crucially, the thermohaline streamfunction is computationally and practically trivial to implement as a diagnostic for ocean models. Here, the thermohaline streamfunction is computed using the output of an equilibrated intermediate complexity climate model. It describes a global cell, a warm tropical cell, and a bottom water cell. The streamfunction computed from eddy-induced advection is equivalent in magnitude to that from the total advection, demonstrating the leading-order importance of parameterized eddy fluxes in oceanic heat and freshwater transports. The global cell, being clockwise in thermohaline space, tends to advect both heat and salt toward denser (poleward) water masses in symmetry with the atmosphere’s poleward transport of moisture. A reprojection of the global cell from thermohaline to geographical coordinates reveals a thermohaline circulation reminiscent of the schematized “global conveyor.”

Full access
Jan D. Zika
,
Willem P. Sijp
, and
Matthew H. England

Abstract

Vertical transport of heat by ocean circulation is investigated using a coupled climate model and novel thermodynamic methods. Using a streamfunction in temperature–depth coordinates, cells are identified by whether they are thermally direct (flux heat upward) or indirect (flux heat downward). These cells are then projected into geographical and other thermodynamic coordinates. Three cells are identified in the model: a thermally direct cell coincident with Antarctic Bottom Water, a thermally indirect deep cell coincident with the upper limb of the meridional overturning circulation, and a thermally direct shallow cell coincident with the subtropical gyres at the surface. The mechanisms maintaining the thermally indirect deep cell are investigated. Sinking water within the deep cell is more saline than that which upwells, because of the coupling between the upper limb and the subtropical gyres in a broader thermohaline circulation. Despite the higher salinity of its sinking water, the deep cell transports buoyancy downward, requiring a source of mechanical energy. Experiments run to steady state with increasing Southern Hemisphere westerlies show an increasing thermally indirect circulation. These results suggest that heat can be pumped downward by the upper limb of the meridional overturning circulation through a combination of salinity gain in the subtropics and the mechanical forcing provided by Southern Hemisphere westerly winds.

Full access
Josef I. Bisits
,
Jan D. Zika
, and
Dafydd Gwyn Evans

Abstract

Vertical exchange of heat and carbon in the ocean regulates Earth’s climate. Convection, a driver of near surface exchange, occurs when dense water overlies light water. Fofonoff (1957) pointed out that when lighter overlying cold-fresh water mixes with denser underlying warm-salty water, the mixture can become denser than the underlying water due to a nonlinear process known as cabbeling. He suggested that such profiles, despite being gravitationally stable, could be classed as being unstable to cabbeling. Fofonoff (1957) hypothesised that, by mixing away such profiles, cabbeling may be shaping the thermohaline structure of polar oceans. We investigate this hypothesis here. In a one-dimensional model we find that convective mixing occurs in temperature inverted profiles that are unstable to cabbeling even when they are initially gravitationally stable. In data from an observationally constrained global circulation model, we find profiles with a temperature inversion larger than −0.5°C are unstable to cabbeling less than 0.02% of the time and in high quality in-situ observations they are unstable less than 12% of the time. We find that due to cabbeling larger temperature inversions, which should weaken stratification, make profiles more stable. Our results suggest that cabbeling limits the stability behaviour of temperature inverted profiles and influences the thermohaline structure in parts of the ocean where cold-fresh water overlays warm-salty water.

Restricted access
Sjoerd Groeskamp
,
Jan D. Zika
,
Trevor J. McDougall
,
Bernadette M. Sloyan
, and
Frédéric Laliberté

Abstract

The ocean’s circulation is analyzed in Absolute Salinity S A and Conservative Temperature Θ coordinates. It is separated into 1) an advective component related to geographical displacements in the direction normal to S A and Θ isosurfaces and 2) into a local component, related to local changes in S A–Θ values, without a geographical displacement. In this decomposition, the sum of the advective and local components of the circulation is equivalent to the material derivative of S A and Θ. The sum is directly related to sources and sinks of salt and heat. The advective component is represented by the advective thermohaline streamfunction . After removing a trend, the local component can be represented by the local thermohaline streamfunction . Here, can be diagnosed using a monthly averaged time series of S A and Θ from an observational dataset. In addition, and are determined from a coupled climate model. The diathermohaline streamfunction is the sum of and and represents the nondivergent diathermohaline circulation in S A–Θ coordinates. The diathermohaline trend, resulting from the trend in the local changes of S A and Θ, quantifies the redistribution of the ocean’s volume in S A–Θ coordinates over time. It is argued that the diathermohaline streamfunction provides a powerful tool for the analysis of and comparison among ocean models and observation-based gridded climatologies.

Full access
Sjoerd Groeskamp
,
Bernadette M. Sloyan
,
Jan D. Zika
, and
Trevor J. McDougall

Abstract

This study provides observation-based estimates, determined by inverse methods, of horizontal and isopycnal eddy diffusion coefficients K H and K I , respectively, the small-scale mixing coefficient D, and the diathermohaline streamfunction Ψ. The inverse solution of Ψ represents the ocean circulation in Absolute Salinity S A and Conservative Temperature Θ coordinates. The authors suggest that the observation-based estimate of Ψ will be useful for comparison with equivalent diagnostics from numerical climate models. The estimates of K H and K I represent horizontal eddy mixing in the mixed layer and isopycnal eddy mixing in the ocean interior, respectively. This study finds that the solution for D and K H are comparable to existing estimates. The solution for K I is one of the first observation-based global and full-depth constrained estimates of isopycnal mixing and indicates that K I is an order of magnitude smaller than K H . This suggests that there is a large vertical variation in the eddy mixing coefficient, which is generally not included in ocean models. With ocean models being very sensitive to the choice of isopycnal mixing, this result suggests that further investigation of the spatial structure of isopycnal eddy mixing from observations is required.

Full access
Jan D. Zika
,
Julien Le Sommer
,
Carolina O. Dufour
,
Alberto Naveira-Garabato
, and
Adam Blaker

Abstract

The influence of wind forcing on variability of the Antarctic Circumpolar Current (ACC) is investigated using a series of eddy-permitting ocean–sea ice models. At interannual and decadal time scales the ACC transport is sensitive to both the mean strength of westerly winds along the ACC circumpolar path, consistent with zonal momentum balance theories, and sensitive to the wind stresses along the coast of Antarctica, consistent with the “free mode” theory of Hughes et al. A linear combination of the two factors explains differences in ACC transport across 11 regional quasi-equilibrium experiments. Repeated single-year global experiments show that the ACC can be robustly accelerated by both processes. Across an ensemble of simulations with realistic forcing over the second half of the twentieth century, interannual ACC transport variability owing to the free-mode mechanism exceeds that due to the zonal momentum balance mechanism by a factor of between 3.5 and 5 to one. While the ACC transport may not accelerate significantly owing to projected increases in along-ACC winds in future decades, significant changes in transport could still occur because of changes in the stress along the coast of Antarctica.

Full access
Sjoerd Groeskamp
,
Jan D. Zika
,
Bernadette M. Sloyan
,
Trevor J. McDougall
, and
Peter C. McIntosh

Abstract

The thermohaline inverse method (THIM) is presented that provides estimates of the diathermohaline streamfunction , the downgradient along-isopycnal diffusion coefficient K, and the isotropic downgradient turbulent diffusion coefficient D of small-scale mixing processes. This is accomplished by using the water mass transformation framework in two tracer dimensions: here in Absolute Salinity S A and Conservative Temperature Θ coordinates. The authors show that a diathermal volume transport down a Conservative Temperature gradient is related to surface heating and cooling and mixing, and a diahaline volume transport down an Absolute Salinity gradient is related to surface freshwater fluxes and mixing. Both the diahaline and diathermal flows can be calculated using readily observed parameters that are used to produce climatologies, surface flux products, and mixing parameterizations for K and D. Conservation statements for volume, salt, and heat in (S A, Θ) coordinates, using the diahaline and diathermal volume transport expressed as surface freshwater and heat fluxes and mixing, allow for the formulation of a system of equations that is solved by an inverse method that can estimate the unknown diathermohaline streamfunction and the diffusion coefficients K and D. The inverse solution provides an accurate estimate of , K, and D when tested against a numerical climate model for which all these parameters are known.

Full access
Alberto C. Naveira Garabato
,
Kurt L. Polzin
,
Raffaele Ferrari
,
Jan D. Zika
, and
Alexander Forryan

Abstract

The relative roles of isoneutral stirring by mesoscale eddies and dianeutral stirring by small-scale turbulence in setting the large-scale temperature–salinity relation of the Southern Ocean against the action of the overturning circulation are assessed by analyzing a set of shear and temperature microstructure measurements across Drake Passage in a “triple decomposition” framework. It is shown that a picture of mixing and overturning across a region of the Antarctic Circumpolar Current (ACC) may be constructed from a relatively modest number of microstructure profiles. The rates of isoneutral and dianeutral stirring are found to exhibit distinct, characteristic, and abrupt variations: most notably, a one to two orders of magnitude suppression of isoneutral stirring in the upper kilometer of the ACC frontal jets and an order of magnitude intensification of dianeutral stirring in the subpycnocline and deepest layers of the ACC. These variations balance an overturning circulation with meridional flows of O(1) mm s−1 across the ACC’s mean thermohaline structure. Isoneutral and dianeutral stirring play complementary roles in balancing the overturning, with isoneutral processes dominating in intermediate waters and the Upper Circumpolar Deep Water and dianeutral processes prevailing in lighter and denser layers.

Full access
Abhishek Savita
,
Jan D. Zika
,
Catia M. Domingues
,
Simon J. Marsland
,
Gwyn Dafydd Evans
,
Fabio Boeira Dias
,
Ryan M. Holmes
, and
Andrew McC. Hogg

Abstract

Ocean circulation and mixing regulate Earth’s climate by moving heat vertically within the ocean. We present a new formalism to diagnose the role of ocean circulation and diabatic processes in setting vertical heat transport in ocean models. In this formalism we use temperature tendencies, rather than explicit vertical velocities, to diagnose circulation. Using quasi-steady-state simulations from the Australian Community Climate and Earth-System Simulator Ocean Model (ACCESS-OM2), we diagnose a diathermal overturning circulation in temperature–depth space. Furthermore, projection of tendencies due to diabatic processes onto this coordinate permits us to represent these as apparent overturning circulations. Our framework permits us to extend the concept of “Super Residual Transport,” which combines mean and eddy advection terms with subgridscale isopycnal mixing due to mesoscale eddies but excludes small-scale three-dimensional turbulent mixing effect, to construct a new overturning circulation—the “Super Residual Circulation” (SRC). We find that in the coarse-resolution version of ACCESS-OM2 (nominally 1° horizontal resolution) the SRC is dominated by an ~11-Sv (1 Sv ≡ 106 m3 s−1) circulation that transports heat upward. The SRC’s upward heat transport is ~2 times as large in a finer-horizontal-resolution (0.1°) version of ACCESS, suggesting that a differing balance of super-residual and parameterized small-scale processes may emerge as eddies are resolved. Our analysis adds new insight into superresidual processes, because the SRC elucidates the pathways in temperature and depth space along which water mass transformation occurs.

Open access
Dafydd Gwyn Evans
,
John Toole
,
Gael Forget
,
Jan D. Zika
,
Alberto C. Naveira Garabato
,
A. J. George Nurser
, and
Lisan Yu

Abstract

Interannual variability in the volumetric water mass distribution within the North Atlantic Subtropical Gyre is described in relation to variability in the Atlantic meridional overturning circulation. The relative roles of diabatic and adiabatic processes in the volume and heat budgets of the subtropical gyre are investigated by projecting data into temperature coordinates as volumes of water using an Argo-based climatology and an ocean state estimate (ECCO version 4). This highlights that variations in the subtropical gyre volume budget are predominantly set by transport divergence in the gyre. A strong correlation between the volume anomaly due to transport divergence and the variability of both thermocline depth and Ekman pumping over the gyre suggests that wind-driven heave drives transport anomalies at the gyre boundaries. This wind-driven heaving contributes significantly to variations in the heat content of the gyre, as do anomalies in the air–sea fluxes. The analysis presented suggests that wind forcing plays an important role in driving interannual variability in the Atlantic meridional overturning circulation and that this variability can be unraveled from spatially distributed hydrographic observations using the framework presented here.

Full access