Search Results

You are looking at 11 - 12 of 12 items for

  • Author or Editor: Jeffrey D. Mirocha x
  • Refine by Access: All Content x
Clear All Modify Search
Raj K. Rai
,
Larry K. Berg
,
Mikhail Pekour
,
William J. Shaw
,
Branko Kosovic
,
Jeffrey D. Mirocha
, and
Brandon L. Ennis

Abstract

The assumption of subgrid-scale (SGS) horizontal homogeneity within a model grid cell, which forms the basis of SGS turbulence closures used by mesoscale models, becomes increasingly tenuous as grid spacing is reduced to a few kilometers or less, such as in many emerging high-resolution applications. Herein, the turbulence kinetic energy (TKE) budget equation is used to study the spatiotemporal variability in two types of terrain—complex [Columbia Basin Wind Energy Study (CBWES) site, northeastern Oregon] and flat [Scaled Wind Farm Technology (SWiFT) site, west Texas]—using the Weather Research and Forecasting (WRF) Model. In each case, six nested domains [three domains each for mesoscale and large-eddy simulation (LES)] are used to downscale the horizontal grid spacing from ~10 km to ~10 m using the WRF Model framework. The model output was used to calculate the values of the TKE budget terms in vertical and horizontal planes as well as the averages of grid cells contained in the four quadrants of the LES domain. The budget terms calculated along the planes and the mean profile of budget terms show larger spatial variability at the CBWES site than at the SWiFT site. The contribution of the horizontal derivative of the shear production term to the total shear production was found to be ≈45% and ≈15% at the CBWES and SWiFT sites, respectively, indicating that the horizontal derivatives applied in the budget equation should not be ignored in mesoscale model parameterizations, especially for cases with complex terrain with <10-km scale.

Full access
Raj K. Rai
,
Larry K. Berg
,
Branko Kosović
,
Sue Ellen Haupt
,
Jeffrey D. Mirocha
,
Brandon L. Ennis
, and
Caroline Draxl

Abstract

Coupled mesoscale–microscale simulations are required to provide time-varying weather-dependent inflow and forcing for large-eddy simulations under general flow conditions. Such coupling necessarily spans a wide range of spatial scales (i.e., ~10 m to ~10 km). Herein, we use simulations that involve multiple nested domains with horizontal grid spacings in the terra incognita (i.e., km) that may affect simulated conditions in both the outer and inner domains. We examine the impact on simulated wind speed and turbulence associated with forcing provided by a terrain with grid spacing in the terra incognita. We perform a suite of simulations that use combinations of varying horizontal grid spacings and turbulence parameterization/modeling using the Weather Research and Forecasting (WRF) Model using a combination of planetary boundary layer (PBL) and large-eddy simulation subgrid-scale (LES-SGS) models. The results are analyzed in terms of spectral energy, turbulence kinetic energy, and proper orthogonal decomposition (POD) energy. The results show that the output from the microscale domain depends on the type of turbulence model (e.g., PBL or LES-SGS model) used for a given horizontal grid spacing but is independent of the horizontal grid spacing and turbulence modeling of the parent domain. Simulation using a single domain produced less POD energy in the first few modes compared to a coupled simulation (one-way nesting) for similar horizontal grid spacing, which highlights that coupled simulations are required to accurately pass the mesoscale features into the microscale domain.

Full access