Search Results

You are looking at 11 - 19 of 19 items for

  • Author or Editor: Jennifer E. Kay x
  • Refine by Access: All Content x
Clear All Modify Search
Jennifer E. Kay
,
Marika M. Holland
,
Cecilia M. Bitz
,
Edward Blanchard-Wrigglesworth
,
Andrew Gettelman
,
Andrew Conley
, and
David Bailey

Abstract

This study uses coupled climate model experiments to identify the influence of atmospheric physics [Community Atmosphere Model, versions 4 and 5 (CAM4; CAM5)] and ocean model complexity (slab ocean, full-depth ocean) on the equilibrium Arctic climate response to an instantaneous CO2 doubling. In slab ocean model (SOM) experiments using CAM4 and CAM5, local radiative feedbacks, not atmospheric heat flux convergence, are the dominant control on the Arctic surface response to increased greenhouse gas forcing. Equilibrium Arctic surface air temperature warming and amplification are greater in the CAM5 SOM experiment than in the equivalent CAM4 SOM experiment. Larger 2 × CO2 radiative forcing, more positive Arctic surface albedo feedbacks, and less negative Arctic shortwave cloud feedbacks all contribute to greater Arctic surface warming and sea ice loss in CAM5 as compared to CAM4. When CAM4 is coupled to an active full-depth ocean model, Arctic Ocean horizontal heat flux convergence increases in response to the instantaneous CO2 doubling. Though this increased ocean northward heat transport slightly enhances Arctic sea ice extent loss, the representation of atmospheric processes (CAM4 versus CAM5) has a larger influence on the equilibrium Arctic surface climate response than the degree of ocean coupling (slab ocean versus full-depth ocean). These findings underscore that local feedbacks can be more important than northward heat transport for explaining the equilibrium Arctic surface climate response and response differences in coupled climate models. That said, the processes explaining the equilibrium climate response differences here may be different than the processes explaining intermodel spread in transient climate projections.

Full access
Jason M. English
,
Jennifer E. Kay
,
Andrew Gettelman
,
Xiaohong Liu
,
Yong Wang
,
Yuying Zhang
, and
Helene Chepfer

Abstract

The Arctic radiation balance is strongly affected by clouds and surface albedo. Prior work has identified Arctic cloud liquid water path (LWP) and surface radiative flux biases in the Community Atmosphere Model, version 5 (CAM5), and reductions to these biases with improved mixed-phase ice nucleation schemes. Here, CAM5 net top-of-atmosphere (TOA) Arctic radiative flux biases are quantified along with the contributions of clouds, surface albedos, and new mixed-phase ice nucleation schemes to these biases. CAM5 net TOA all-sky shortwave (SW) and outgoing longwave radiation (OLR) fluxes are generally within 10 W m−2 of Clouds and the Earth’s Radiant Energy System Energy Balanced and Filled (CERES-EBAF) observations. However, CAM5 has compensating SW errors: Surface albedos over snow are too high while cloud amount and LWP are too low. Use of a new CAM5 Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar simulator that corrects an error in the treatment of snow crystal size confirms insufficient cloud amount in CAM5 year-round. CAM5 OLR is too low because of low surface temperature in winter, excessive atmospheric water vapor in summer, and excessive cloud heights year-round. Simulations with two new mixed-phase ice nucleation schemes—one based on an empirical fit to ice nuclei observations and one based on classical nucleation theory with prognostic ice nuclei—improve surface climate in winter by increasing cloud amount and LWP. However, net TOA and surface radiation biases remain because of increases in midlevel clouds and a persistent deficit in cloud LWP. These findings highlight challenges with evaluating and modeling Arctic cloud, radiation, and climate processes.

Full access
Gijs de Boer
,
William Chapman
,
Jennifer E. Kay
,
Brian Medeiros
,
Matthew D. Shupe
,
Steve Vavrus
, and
John Walsh

Abstract

Simulation of key features of the Arctic atmosphere in the Community Climate System Model, version 4 (CCSM4) is evaluated against observational and reanalysis datasets for the present-day (1981–2005). Surface air temperature, sea level pressure, cloud cover and phase, precipitation and evaporation, the atmospheric energy budget, and lower-tropospheric stability are evaluated. Simulated surface air temperatures are found to be slightly too cold when compared with the 40-yr ECMWF Re-Analysis (ERA-40). Spatial patterns and temporal variability are well simulated. Evaluation of the sea level pressure demonstrates some large biases, most noticeably an under simulation of the Beaufort High during spring and autumn. Monthly Arctic-wide biases of up to 13 mb are reported. Cloud cover is underpredicted for all but summer months, and cloud phase is demonstrated to be different from observations. Despite low cloud cover, simulated all-sky liquid water paths are too high, while ice water path was generally too low. Precipitation is found to be excessive over much of the Arctic compared to ERA-40 and the Global Precipitation Climatology Project (GPCP) estimates. With some exceptions, evaporation is well captured by CCSM4, resulting in PE estimates that are too high. CCSM4 energy budget terms show promising agreement with estimates from several sources. The most noticeable exception to this is the top of the atmosphere (TOA) fluxes that are found to be too low while surface fluxes are found to be too high during summer months. Finally, the lower troposphere is found to be too stable when compared to ERA-40 during all times of year but particularly during spring and summer months.

Full access
Gerald A. Meehl
,
Warren M. Washington
,
Julie M. Arblaster
,
Aixue Hu
,
Haiyan Teng
,
Jennifer E. Kay
,
Andrew Gettelman
,
David M. Lawrence
,
Benjamin M. Sanderson
, and
Warren G. Strand

Abstract

Future climate change projections for phase 5 of the Coupled Model Intercomparison Project (CMIP5) are presented for the Community Earth System Model version 1 that includes the Community Atmospheric Model version 5 [CESM1(CAM5)]. These results are compared to the Community Climate System Model, version 4 (CCSM4) and include simulations using the representative concentration pathway (RCP) mitigation scenarios, and extensions for those scenarios beyond 2100 to 2300. Equilibrium climate sensitivity of CESM1(CAM5) is 4.10°C, which is higher than the CCSM4 value of 3.20°C. The transient climate response is 2.33°C, compared to the CCSM4 value of 1.73°C. Thus, even though CESM1(CAM5) includes both the direct and indirect effects of aerosols (CCSM4 had only the direct effect), the overall climate system response including forcing and feedbacks is greater in CESM1(CAM5) compared to CCSM4. The Atlantic Ocean meridional overturning circulation (AMOC) in CESM1(CAM5) weakens considerably in the twenty-first century in all the RCP scenarios, and recovers more slowly in the lower forcing scenarios. The total aerosol optical depth (AOD) changes from ~0.12 in 2006 to ~0.10 in 2100, compared to a preindustrial 1850 value of 0.08, so there is less negative forcing (a net positive forcing) from that source during the twenty-first century. Consequently, the change from 2006 to 2100 in aerosol direct forcing in CESM1(CAM5) contributes to greater twenty-first century warming relative to CCSM4. There is greater Arctic warming and sea ice loss in CESM1(CAM5), with an ice-free summer Arctic occurring by about 2060 in RCP8.5 (2040s in September) as opposed to about 2100 in CCSM4 (2060s in September).

Full access
Alexandra Jahn
,
Kara Sterling
,
Marika M. Holland
,
Jennifer E. Kay
,
James A. Maslanik
,
Cecilia M. Bitz
,
David A. Bailey
,
Julienne Stroeve
,
Elizabeth C. Hunke
,
William H. Lipscomb
, and
Daniel A. Pollak

Abstract

To establish how well the new Community Climate System Model, version 4 (CCSM4) simulates the properties of the Arctic sea ice and ocean, results from six CCSM4 twentieth-century ensemble simulations are compared here with the available data. It is found that the CCSM4 simulations capture most of the important climatological features of the Arctic sea ice and ocean state well, among them the sea ice thickness distribution, fraction of multiyear sea ice, and sea ice edge. The strongest bias exists in the simulated spring-to-fall sea ice motion field, the location of the Beaufort Gyre, and the temperature of the deep Arctic Ocean (below 250 m), which are caused by deficiencies in the simulation of the Arctic sea level pressure field and the lack of deep-water formation on the Arctic shelves. The observed decrease in the sea ice extent and the multiyear ice cover is well captured by the CCSM4. It is important to note, however, that the temporal evolution of the simulated Arctic sea ice cover over the satellite era is strongly influenced by internal variability. For example, while one ensemble member shows an even larger decrease in the sea ice extent over 1981–2005 than that observed, two ensemble members show no statistically significant trend over the same period. It is therefore important to compare the observed sea ice extent trend not just with the ensemble mean or a multimodel ensemble mean, but also with individual ensemble members, because of the strong imprint of internal variability on these relatively short trends.

Full access
Jonathan J. Day
,
Gunilla Svensson
,
Ian M. Brooks
,
Cecilia Bitz
,
Lina Broman
,
Glenn Carver
,
Matthieu Chevallier
,
Helge Goessling
,
Kerstin Hartung
,
Thomas Jung
,
Jennifer E. Kay
,
Erik W. Kolstad
,
Don Perovich
,
James Screen
,
Stephan Siemen
, and
Filip Váňa
Full access
James W. Hurrell
,
M. M. Holland
,
P. R. Gent
,
S. Ghan
,
Jennifer E. Kay
,
P. J. Kushner
,
J.-F. Lamarque
,
W. G. Large
,
D. Lawrence
,
K. Lindsay
,
W. H. Lipscomb
,
M. C. Long
,
N. Mahowald
,
D. R. Marsh
,
R. B. Neale
,
P. Rasch
,
S. Vavrus
,
M. Vertenstein
,
D. Bader
,
W. D. Collins
,
J. J. Hack
,
J. Kiehl
, and
S. Marshall

The Community Earth System Model (CESM) is a flexible and extensible community tool used to investigate a diverse set of Earth system interactions across multiple time and space scales. This global coupled model significantly extends its predecessor, the Community Climate System Model, by incorporating new Earth system simulation capabilities. These comprise the ability to simulate biogeochemical cycles, including those of carbon and nitrogen, a variety of atmospheric chemistry options, the Greenland Ice Sheet, and an atmosphere that extends to the lower thermosphere. These and other new model capabilities are enabling investigations into a wide range of pressing scientific questions, providing new foresight into possible future climates and increasing our collective knowledge about the behavior and interactions of the Earth system. Simulations with numerous configurations of the CESM have been provided to phase 5 of the Coupled Model Intercomparison Project (CMIP5) and are being analyzed by the broad community of scientists. Additionally, the model source code and associated documentation are freely available to the scientific community to use for Earth system studies, making it a true community tool. This article describes this Earth system model and its various possible configurations, and highlights a number of its scientific capabilities.

Full access
Tristan S. L’Ecuyer
,
Brian J. Drouin
,
James Anheuser
,
Meredith Grames
,
David S. Henderson
,
Xianglei Huang
,
Brian H. Kahn
,
Jennifer E. Kay
,
Boon H. Lim
,
Marian Mateling
,
Aronne Merrelli
,
Nathaniel B. Miller
,
Sharmila Padmanabhan
,
Colten Peterson
,
Nicole-Jeanne Schlegel
,
Mary L. White
, and
Yan Xie

Abstract

Earth’s climate is strongly influenced by energy deficits at the poles that emit more thermal energy than they receive from the sun. Energy exchanges between the surface and atmosphere influence the local environment while heat transport from lower latitudes drives midlatitude atmospheric and oceanic circulations. In the Arctic, in particular, local energy imbalances induce strong seasonality in surface–atmosphere heat exchanges and an acute sensitivity to forced climate variations. Despite these important local and global influences, the largest contributions to the polar atmospheric and surface energy budgets have not been fully characterized. The spectral variation of far-infrared radiation that makes up 60% of polar thermal emission has never been systematically measured impeding progress toward consensus in predicted rates of Arctic warming, sea ice decline, and ice sheet melt. Enabled by recent advances in sensor miniaturization and CubeSat technology, the Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) mission will document, for the first time, the spectral, spatial, and temporal variations of polar far-infrared emission. Selected under NASA’s Earth Ventures Instrument (EVI) program, PREFIRE will utilize new lightweight, low-power, ambient temperature detectors capable of measuring at wavelengths up to 50 μm to quantify Earth’s far-infrared spectrum. Estimates of spectral surface emissivity, water vapor, cloud properties, and the atmospheric greenhouse effect derived from these measurements offer the potential to advance our understanding of the factors that modulate thermal fluxes in the cold, dry conditions characteristic of the polar regions.

Full access
Mitchell Bushuk
,
Sahara Ali
,
David A. Bailey
,
Qing Bao
,
Lauriane Batté
,
Uma S. Bhatt
,
Edward Blanchard-Wrigglesworth
,
Ed Blockley
,
Gavin Cawley
,
Junhwa Chi
,
François Counillon
,
Philippe Goulet Coulombe
,
Richard I. Cullather
,
Francis X. Diebold
,
Arlan Dirkson
,
Eleftheria Exarchou
,
Maximilian Göbel
,
William Gregory
,
Virginie Guemas
,
Lawrence Hamilton
,
Bian He
,
Sean Horvath
,
Monica Ionita
,
Jennifer E. Kay
,
Eliot Kim
,
Noriaki Kimura
,
Dmitri Kondrashov
,
Zachary M. Labe
,
WooSung Lee
,
Younjoo J. Lee
,
Cuihua Li
,
Xuewei Li
,
Yongcheng Lin
,
Yanyun Liu
,
Wieslaw Maslowski
,
François Massonnet
,
Walter N. Meier
,
William J. Merryfield
,
Hannah Myint
,
Juan C. Acosta Navarro
,
Alek Petty
,
Fangli Qiao
,
David Schröder
,
Axel Schweiger
,
Qi Shu
,
Michael Sigmond
,
Michael Steele
,
Julienne Stroeve
,
Nico Sun
,
Steffen Tietsche
,
Michel Tsamados
,
Keguang Wang
,
Jianwu Wang
,
Wanqiu Wang
,
Yiguo Wang
,
Yun Wang
,
James Williams
,
Qinghua Yang
,
Xiaojun Yuan
,
Jinlun Zhang
, and
Yongfei Zhang

Abstract

This study quantifies the state-of-the-art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multi-model dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001–2020 for predictions of Pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on June 1, July 1, August 1, and September 1. This diverse set of statistical and dynamical models can individually predict linearly detrended Pan-Arctic SIE anomalies with skill, and a multi-model median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to Pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and Central Arctic sectors. The skill of dynamical and statistical models is generally comparable for Pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least three months in advance.

Open access