Search Results

You are looking at 11 - 14 of 14 items for :

  • Author or Editor: Jessica D. Lundquist x
  • Refine by Access: All Content x
Clear All Modify Search
Jessica D. Lundquist
,
Justin R. Minder
,
Paul J. Neiman
, and
Ellen Sukovich

Abstract

The rate of precipitation increase with elevation, termed the orographic precipitation gradient (OPG), is critically important for hydrologic forecasting in mountain basins that receive both rain and snow. Here, the following are examined to see how well they are able to predict the OPG and how it changes between storms and years: 1) a linear model of orographic precipitation forced by upstream radiosonde data, 2) monthly Parameter-Elevation Regressions on Independent Slopes Model (PRISM) precipitation data, and 3) seven years of hourly wind profiler data used to identify characteristics of the Sierra barrier jet (SBJ). These are compared against 124 daily resolution (four of which also had quality controlled, hourly resolution) precipitation gauge records in the northern Sierra Nevada. All methods represent the OPG well in the mean and during a year when less than 30% of the precipitation occurred on days with SBJs. However, the linear model and PRISM do not adequately capture annual variations in the OPG during years when more than 70% of the precipitation occurred on days with SBJs. Throughout all of the years, wind profiler data indicating the height of the SBJ provided additional, and necessary, information. The OPG is negatively correlated with the height of the SBJ. The SBJ height is lower, and hence, the OPG greater when the westerly winds are stronger, with more vertical wind shear. These westerly storms result in greater increases of precipitation with elevation, which act to increase snow storage in most storms but also to increase storm runoff during warmer-than-average storms.

Full access
Jessica D. Lundquist
,
Mimi Hughes
,
Brian Henn
,
Ethan D. Gutmann
,
Ben Livneh
,
Jeff Dozier
, and
Paul Neiman

Abstract

Gridded spatiotemporal maps of precipitation are essential for hydrometeorological and ecological analyses. In the United States, most of these datasets are developed using the Cooperative Observer (COOP) network of ground-based precipitation measurements, interpolation, and the Parameter–Elevation Regressions on Independent Slopes Model (PRISM) to map these measurements to places where data are not available. Here, we evaluate two daily datasets gridded at ° resolution against independent daily observations from over 100 snow pillows in California’s Sierra Nevada from 1990 to 2010. Over the entire period, the gridded datasets performed reasonably well, with median total water-year errors generally falling within ±10%. However, errors in individual storm events sometimes exceeded 50% for the median difference across all stations, and in many cases, the same underpredicted storms appear in both datasets. Synoptic analysis reveals that these underpredicted storms coincide with 700-hPa winds from the west or northwest, which are associated with post-cold-frontal flow and disproportionately small precipitation rates in low-elevation valley locations, where the COOP stations are primarily located. This atmospheric circulation leads to a stronger than normal valley-to-mountain precipitation gradient and underestimation of actual mountain precipitation. Because of the small average number of storms (<10) reaching California each year, these individual storm misses can lead to large biases (~20%) in total water-year precipitation and thereby significantly affect estimates of statewide water resources.

Full access
Jessica D. Lundquist
,
Paul J. Neiman
,
Brooks Martner
,
Allen B. White
,
Daniel J. Gottas
, and
F. Martin Ralph

Abstract

The maritime mountain ranges of western North America span a wide range of elevations and are extremely sensitive to flooding from warm winter storms, primarily because rain falls at higher elevations and over a much greater fraction of a basin’s contributing area than during a typical storm. Accurate predictions of this rain–snow line are crucial to hydrologic forecasting. This study examines how remotely sensed atmospheric snow levels measured upstream of a mountain range (specifically, the bright band measured above radar wind profilers) can be used to accurately portray the altitude of the surface transition from snow to rain along the mountain’s windward slopes, focusing on measurements in the Sierra Nevada, California, from 2001 to 2005. Snow accumulation varies with respect to surface temperature, diurnal cycles in solar radiation, and fluctuations in the free-tropospheric melting level. At 1.5°C, 50% of precipitation events fall as rain and 50% as snow, and on average, 50% of measured precipitation contributes to increases in snow water equivalent (SWE). Between 2.5° and 3°C, snow is equally likely to melt or accumulate, with most cases resulting in no change to SWE. Qualitatively, brightband heights (BBHs) detected by 915-MHz profiling radars up to 300 km away from the American River study basin agree well with surface melting patterns. Quantitatively, this agreement can be improved by adjusting the melting elevation based on the spatial location of the profiler relative to the basin: BBHs decrease with increasing latitude and decreasing distance to the windward slope of the Sierra Nevada. Because of diurnal heating and cooling by radiation at the mountain surface, BBHs should also be adjusted to higher surface elevations near midday and lower elevations near midnight.

Full access
Robert A. Houze Jr.
,
Lynn A. McMurdie
,
Walter A. Petersen
,
Mathew R. Schwaller
,
William Baccus
,
Jessica D. Lundquist
,
Clifford F. Mass
,
Bart Nijssen
,
Steven A. Rutledge
,
David R. Hudak
,
Simone Tanelli
,
Gerald G. Mace
,
Michael R. Poellot
,
Dennis P. Lettenmaier
,
Joseph P. Zagrodnik
,
Angela K. Rowe
,
Jennifer C. DeHart
,
Luke E. Madaus
,
Hannah C. Barnes
, and
V. Chandrasekar

Abstract

The Olympic Mountains Experiment (OLYMPEX) took place during the 2015/16 fall–winter season in the vicinity of the mountainous Olympic Peninsula of Washington State. The goals of OLYMPEX were to provide physical and hydrologic ground validation for the U.S.–Japan Global Precipitation Measurement (GPM) satellite mission and, more specifically, to study how precipitation in Pacific frontal systems is modified by passage over coastal mountains. Four transportable scanning dual-polarization Doppler radars of various wavelengths were installed. Surface stations were placed at various altitudes to measure precipitation rates, particle size distributions, and fall velocities. Autonomous recording cameras monitored and recorded snow accumulation. Four research aircraft supplied by NASA investigated precipitation processes and snow cover, and supplemental rawinsondes and dropsondes were deployed during precipitation events. Numerous Pacific frontal systems were sampled, including several reaching “atmospheric river” status, warm- and cold-frontal systems, and postfrontal convection.

Open access