Search Results

You are looking at 11 - 11 of 11 items for

  • Author or Editor: Jian Ma x
  • Refine by Access: All Content x
Clear All Modify Search
Xin Li, Guodong Cheng, Shaomin Liu, Qing Xiao, Mingguo Ma, Rui Jin, Tao Che, Qinhuo Liu, Weizhen Wang, Yuan Qi, Jianguang Wen, Hongyi Li, Gaofeng Zhu, Jianwen Guo, Youhua Ran, Shuoguo Wang, Zhongli Zhu, Jian Zhou, Xiaoli Hu, and Ziwei Xu

A major research plan entitled “Integrated research on the ecohydrological process of the Heihe River Basin” was launched by the National Natural Science Foundation of China in 2010. One of the key aims of this research plan is to establish a research platform that integrates observation, data management, and model simulation to foster twenty-first-century watershed science in China. Based on the diverse needs of interdisciplinary studies within this research plan, a program called the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) was implemented. The overall objective of HiWATER is to improve the observability of hydrological and ecological processes, to build a world-class watershed observing system, and to enhance the applicability of remote sensing in integrated ecohydrological studies and water resource management at the basin scale. This paper introduces the background, scientific objectives, and experimental design of HiWATER. The instrumental setting and airborne mission plans are also outlined. The highlights are the use of a flux observing matrix and an eco-hydrological wireless sensor network to capture multiscale heterogeneities and to address complex problems, such as heterogeneity, scaling, uncertainty, and closing water cycle at the watershed scale. HiWATER was formally initialized in May 2012 and will last four years until 2015. Data will be made available to the scientific community via the Environmental and Ecological Science Data Center for West China. International scientists are welcome to participate in the field campaign and use the data in their analyses.

Full access