Search Results

You are looking at 11 - 20 of 60 items for

  • Author or Editor: Jimy Dudhia x
  • Refine by Access: All Content x
Clear All Modify Search
Pedro A. Jiménez
and
Jimy Dudhia

Abstract

The Weather Research and Forecasting (WRF) model presents a high surface wind speed bias over plains and valleys that constitutes a limitation for the increasing use of the model for several applications. This study attempts to correct for this bias by parameterizing the effects that the unresolved topographic features exert over the momentum flux. The proposed parameterization is based on the concept of a momentum sink term and makes use of the standard deviation of the subgrid-scale orography as well as the Laplacian of the topographic field. Both the drag generated by the unresolved terrain and the possibility of an increase in the speed of the flow over the mountains and hills, where it is herein shown that WRF presents a low wind speed bias, are considered in the scheme. The surface wind simulation over a complex-terrain region that is located in the northeast of the Iberian Peninsula is improved with the inclusion of the new parameterization. In particular, the underestimation of the wind speed spatial variability resulting from the mentioned biases is corrected. The importance of selecting appropriate grid points to compare with observations is also examined. The wind speed from the nearest grid point is not always the most appropriate one for this comparison, nearby ones being more representative. The new scheme not only improves the climatological winds but also the intradiurnal variations at the mountains, over which the default WRF shows limitations in reproducing the observed wind behavior. Some advantages of the proposed formulation for wind-resource evaluation are also discussed.

Full access
Pedro A. Jiménez
and
Jimy Dudhia

Abstract

The wind stress formulation in an atmospheric model over shallow waters is investigated using year-long observations of the wind profile within the first 100 m of the atmosphere and mesoscale simulations. The model experiments use a range of planetary boundary layer parameterizations to quantify the uncertainty related to the turbulent closure assumptions and thus to isolate the dominant influence of the surface roughness formulation. Results indicate that a positive wind speed bias exists when common open-ocean formulations for roughness are adopted for a region with a water depth of 30 m. Imposition of a wind stress formulation that is consistent with previous shallow-water estimates is necessary to reconcile model wind speeds with observations, providing modeling evidence that supports the increase of surface drag over shallow waters. The possibility of including water depth in the parameterization of roughness length is examined.

Full access
Song-You Hong
and
Jimy Dudhia

No abstract available.

Full access
Hyeyum Hailey Shin
and
Jimy Dudhia

Abstract

Planetary boundary layer (PBL) parameterizations in mesoscale models have been developed for horizontal resolutions that cannot resolve any turbulence in the PBL, and evaluation of these parameterizations has been focused on profiles of mean and parameterized flux. Meanwhile, the recent increase in computing power has been allowing numerical weather prediction (NWP) at horizontal grid spacings finer than 1 km, at which kilometer-scale large eddies in the convective PBL are partly resolvable. This study evaluates the performance of convective PBL parameterizations in the Weather Research and Forecasting (WRF) Model at subkilometer grid spacings. The evaluation focuses on resolved turbulence statistics, considering expectations for improvement in the resolved fields by using the fine meshes. The parameterizations include four nonlocal schemes—Yonsei University (YSU), asymmetric convective model 2 (ACM2), eddy diffusivity mass flux (EDMF), and total energy mass flux (TEMF)—and one local scheme, the Mellor–Yamada–Nakanishi–Niino (MYNN) level-2.5 model.

Key findings are as follows: 1) None of the PBL schemes is scale-aware. Instead, each has its own best performing resolution in parameterizing subgrid-scale (SGS) vertical transport and resolving eddies, and the resolution appears to be different between heat and momentum. 2) All the selected schemes reproduce total vertical heat transport well, as resolved transport compensates differences of the parameterized SGS transport from the reference SGS transport. This interaction between the resolved and SGS parts is not found in momentum. 3) Those schemes that more accurately reproduce one feature (e.g., thermodynamic transport, momentum transport, energy spectrum, or probability density function of resolved vertical velocity) do not necessarily perform well for other aspects.

Full access
Steven M. Cavallo
,
Jimy Dudhia
, and
Chris Snyder

Abstract

An upper-level cold bias in potential temperature tendencies of 10 K day−1, strongest at the top of the model, is observed in Weather Research and Forecasting (WRF) model forecasts. The bias originates from the Rapid Radiative Transfer Model longwave radiation physics scheme and can be reduced substantially by 1) modifying the treatment within the scheme by adding a multilayer buffer between the model top and top of the atmosphere and 2) constraining stratospheric water vapor to remain within the estimated climatology in the stratosphere. These changes reduce the longwave heating rate bias at the model top to ±0.5 K day−1. Corresponding bias reductions are also seen, particularly near the tropopause.

Full access
Samson Hagos
,
L. Ruby Leung
, and
Jimy Dudhia

Abstract

To identify the main thermodynamic processes that sustain the Madden–Julian oscillation (MJO), an eddy available potential energy budget analysis is performed on a regional model simulation with moisture constrained by observations. The model realistically simulates the two MJO episodes observed during the winter of 2007/08. Analysis of these two cases shows that instabilities and damping associated with variations in diabatic heating and energy transport work in concert to provide the MJO with its observed characteristics. The results are used to construct a simplified paradigm of MJO thermodynamics.

Furthermore, the effect of moisture nudging on the simulation is analyzed to identify the limitations of the model cumulus parameterization. Without moisture nudging, the parameterization fails to provide adequate low-level (upper level) moistening during the early (late) stage of the MJO active phase. The moistening plays a critical role in providing stratiform heating variability that is an important source of eddy available potential energy for the model MJO.

Full access
Stephanie Evan
,
M. Joan Alexander
, and
Jimy Dudhia

Abstract

A 2-day inertia–gravity wave (IGW) was observed in high-resolution radiosonde soundings of horizontal wind and temperature taken during the 2006 Tropical Warm Pool–International Cloud Experiment (TWP-ICE) experiment in the Darwin area. The wave was observed in the stratosphere above Darwin from 28 January to 5 February. A similar wave event is observed in the European Centre for Medium-Range Weather Forecasts (ECMWF) operational data. A comparison between the characteristics of the IGW derived with the ECMWF data to the properties of the wave derived with the radiosonde data shows that the ECMWF data capture similar structure for this 2-day wave event but with a larger vertical wavelength.

A reverse ray-tracing method is used to localize the source region. Using ECMWF data to define the atmospheric background conditions and wave properties observed in the soundings, it is found that the 2-day wave event originated from deep convection in the Indonesian region around 20 January.

The Weather Research and Forecasting (WRF) modeling system is used to complement the ECMWF data to assess the influence of vertical resolution and initial conditions on the wave structure. The model domain is configured as a tropical channel and the ECMWF analyses provide the north/south boundaries and initial conditions. WRF is used with the same horizontal resolution (40 km) as the operational ECMWF in 2006 while using a finer vertical grid spacing than ECMWF. The model is run from 18 January to 11 February to cover the wave life cycle. Different experiments are also performed to determine the sensitivity of the wave structure to cumulus schemes, initial conditions, and vertical resolution. The 2-day wave properties resulting from the WRF experiments are compared to those retrieved from the radiosonde data and from the ECMWF analyses. It is demonstrated that higher vertical resolution would be required for ECMWF to accurately resolve the vertical structure of the wave and its effect on the middle-atmospheric circulation.

Full access
Song-You Hong
,
Yign Noh
, and
Jimy Dudhia

Abstract

This paper proposes a revised vertical diffusion package with a nonlocal turbulent mixing coefficient in the planetary boundary layer (PBL). Based on the study of Noh et al. and accumulated results of the behavior of the Hong and Pan algorithm, a revised vertical diffusion algorithm that is suitable for weather forecasting and climate prediction models is developed. The major ingredient of the revision is the inclusion of an explicit treatment of entrainment processes at the top of the PBL. The new diffusion package is called the Yonsei University PBL (YSU PBL). In a one-dimensional offline test framework, the revised scheme is found to improve several features compared with the Hong and Pan implementation. The YSU PBL increases boundary layer mixing in the thermally induced free convection regime and decreases it in the mechanically induced forced convection regime, which alleviates the well-known problems in the Medium-Range Forecast (MRF) PBL. Excessive mixing in the mixed layer in the presence of strong winds is resolved. Overly rapid growth of the PBL in the case of the Hong and Pan is also rectified. The scheme has been successfully implemented in the Weather Research and Forecast model producing a more realistic structure of the PBL and its development. In a case study of a frontal tornado outbreak, it is found that some systematic biases of the large-scale features such as an afternoon cold bias at 850 hPa in the MRF PBL are resolved. Consequently, the new scheme does a better job in reproducing the convective inhibition. Because the convective inhibition is accurately predicted, widespread light precipitation ahead of a front, in the case of the MRF PBL, is reduced. In the frontal region, the YSU PBL scheme improves some characteristics, such as a double line of intense convection. This is because the boundary layer from the YSU PBL scheme remains less diluted by entrainment leaving more fuel for severe convection when the front triggers it.

Full access
Christopher Davis
,
Wei Wang
,
Jimy Dudhia
, and
Ryan Torn

Abstract

The representation of tropical cyclone track, intensity, and structure in a set of 69 parallel forecasts performed at each of two horizontal grid increments with the Advanced Research Hurricane (AHW) component of the Weather and Research and Forecasting Model (WRF) is evaluated. These forecasts covered 10 Atlantic tropical cyclones: 6 from the 2005 season and 4 from 2007. The forecasts were integrated from identical initial conditions produced by a cycling ensemble Kalman filter. The high-resolution forecasts used moving, storm-centered nests of 4- and 1.33-km grid spacing. The coarse-resolution forecasts consisted of a single 12-km domain (which was identical to the outer domain in the forecasts with nests). Forecasts were evaluated out to 120 h. Novel verification techniques were developed to evaluate forecasts of wind radii and the degree of storm asymmetry. Intensity (maximum wind) and rapid intensification, as well as wind radii, were all predicted more accurately with increased horizontal resolution. These results were deemed to be statistically significant based on the application of bootstrap confidence intervals. No statistically significant differences emerged regarding storm position errors between the two forecasts. Coarse-resolution forecasts tended to overpredict the extent of winds compared to high-resolution forecasts. The asymmetry of gale-force winds was better predicted in the coarser-resolution simulation, but asymmetry of hurricane-force winds was predicted better at high resolution. The skill of the wind radii forecasts decayed gradually over 120 h, suggesting a synoptic-scale control of the predictability of outer winds.

Full access
C-H. Moeng
,
Jimy Dudhia
,
Joe Klemp
, and
Peter Sullivan

Abstract

The performance of two-way nesting for large eddy simulation (LES) of PBL turbulence is investigated using the Weather Research and Forecasting model framework. A pair of LES-within-LES experiments are performed where a finer-grid LES covering a smaller horizontal domain is nested inside a coarser-grid LES covering a larger horizontal domain. Both LESs are driven under the same environmental conditions, allowed to interact with each other, and expected to behave the same statistically. The first experiment of the free-convective PBL reveals a mean temperature bias between the two LES domains, which generates a nonzero mean vertical velocity in the nest domain while the mean vertical velocity averaged over the outer domain remains zero. The problem occurs when the horizontal extent of the nest domain is too small to capture an adequate sample of energy-containing eddies; this problem can be alleviated using a nest domain that is at least 5 times the PBL depth in both x and y. The second experiment of the neutral PBL exposes a bias in the prediction of the surface stress between the two LES domains, which is found due to the grid dependence of the Smagorinsky-type subgrid-scale (SGS) model. A new two-part SGS model is developed to solve this problem.

Full access