Search Results
You are looking at 11 - 19 of 19 items for
- Author or Editor: Johannes Schmetz x
- Refine by Access: All Content x
Abstract
Satellite-derived cloud-motion vector (CMV) production has been troubled by inaccurate height assignment of cloud tracers, especially in thin semitransparent clouds. This paper presents the results of an intercomparison of current operational height assignment techniques. Currently, heights are assigned by one of three techniques when the appropriate spectral radiance measurements are available. The infrared window (IRW) technique compares measured brightness temperatures to forecast temperature profiles and thus infers opaque cloud levels. In semitransparent or small subpixel clouds, the carbon dioxide (CO2) technique uses the ratio of radiances from different layers of the atmosphere to infer the correct cloud height. In the water vapor (H2O) technique, radiances influenced by upper-tropospheric moisture and IRW radiances are measured for several pixels viewing different cloud amounts, and their linear relationship is used to extrapolate the correct cloud height. The results presented in this paper suggest that the H2O technique is a viable alternative to the CO2 technique for inferring the heights of semitransparent cloud elements. This is important since future National Environmental Satellite, Data, and Information Service (NESDIS) operations will have to rely on H20-derived cloud-height assignments in the wind field determinations with the next operational geostationary satellite. On a given day, the heights from the two approaches compare to within 60110 hPa rms; drier atmospheric conditions tend to reduce the effectiveness of the H2O technique. By inference one can conclude that the present height algorithms used operationally at NESDIS (with the C02 technique) and at the European Satellite Operations Center (ESOC) (with their version of the H20 technique) are providing similar results. Sample wind fields produced with the ESOC and NESDIS algorithms using Meteosat-4 data show good agreement.
Abstract
Satellite-derived cloud-motion vector (CMV) production has been troubled by inaccurate height assignment of cloud tracers, especially in thin semitransparent clouds. This paper presents the results of an intercomparison of current operational height assignment techniques. Currently, heights are assigned by one of three techniques when the appropriate spectral radiance measurements are available. The infrared window (IRW) technique compares measured brightness temperatures to forecast temperature profiles and thus infers opaque cloud levels. In semitransparent or small subpixel clouds, the carbon dioxide (CO2) technique uses the ratio of radiances from different layers of the atmosphere to infer the correct cloud height. In the water vapor (H2O) technique, radiances influenced by upper-tropospheric moisture and IRW radiances are measured for several pixels viewing different cloud amounts, and their linear relationship is used to extrapolate the correct cloud height. The results presented in this paper suggest that the H2O technique is a viable alternative to the CO2 technique for inferring the heights of semitransparent cloud elements. This is important since future National Environmental Satellite, Data, and Information Service (NESDIS) operations will have to rely on H20-derived cloud-height assignments in the wind field determinations with the next operational geostationary satellite. On a given day, the heights from the two approaches compare to within 60110 hPa rms; drier atmospheric conditions tend to reduce the effectiveness of the H2O technique. By inference one can conclude that the present height algorithms used operationally at NESDIS (with the C02 technique) and at the European Satellite Operations Center (ESOC) (with their version of the H20 technique) are providing similar results. Sample wind fields produced with the ESOC and NESDIS algorithms using Meteosat-4 data show good agreement.
Abstract
In this paper, the amount of satellite-derived longwave cloud radiative forcing (CRF) that is due to an increase in upper-tropospheric water vapor associated with the evolution from clear-sky to the observed all-sky conditions is assessed. This is important because the satellite-derived clear-sky outgoing radiative fluxes needed for the CRF determination are from cloud-free areas away from the cloudy regions in order to avoid cloud contamination of the clear-sky fluxes. However, avoidance of cloud contamination implies a sampling problem as the clear-sky fluxes represent an area drier than the hypothetical clear-sky humidity in cloudy regions. While this issue has been recognized in earlier works this study makes an attempt to quantitatively estimate the bias in the clear-sky longwave CRF. Water vapor amounts in the 200–500-mb layer corresponding to all-sky condition are derived from microwave measurements with the Special Sensor Microwave Temperature-2 Profiler and are used in combination with cloud data for determining the clear-sky water vapor distribution of that layer. The obtained water vapor information is then used to constrain the humidity profiles for calculating clear-sky longwave fluxes at the top of the atmosphere. It is shown that the clear-sky moisture bias in the upper troposphere can be up to 40%–50% drier over convectively active regions. Results indicate that up to 12 W m−2 corresponding to about 15% of the satellite-derived longwave CRF in tropical regions can be attributed to the water vapor changes associated with cloud development.
Abstract
In this paper, the amount of satellite-derived longwave cloud radiative forcing (CRF) that is due to an increase in upper-tropospheric water vapor associated with the evolution from clear-sky to the observed all-sky conditions is assessed. This is important because the satellite-derived clear-sky outgoing radiative fluxes needed for the CRF determination are from cloud-free areas away from the cloudy regions in order to avoid cloud contamination of the clear-sky fluxes. However, avoidance of cloud contamination implies a sampling problem as the clear-sky fluxes represent an area drier than the hypothetical clear-sky humidity in cloudy regions. While this issue has been recognized in earlier works this study makes an attempt to quantitatively estimate the bias in the clear-sky longwave CRF. Water vapor amounts in the 200–500-mb layer corresponding to all-sky condition are derived from microwave measurements with the Special Sensor Microwave Temperature-2 Profiler and are used in combination with cloud data for determining the clear-sky water vapor distribution of that layer. The obtained water vapor information is then used to constrain the humidity profiles for calculating clear-sky longwave fluxes at the top of the atmosphere. It is shown that the clear-sky moisture bias in the upper troposphere can be up to 40%–50% drier over convectively active regions. Results indicate that up to 12 W m−2 corresponding to about 15% of the satellite-derived longwave CRF in tropical regions can be attributed to the water vapor changes associated with cloud development.
Abstract
A hyperspectral infrared (IR) sounder from geostationary orbit provides nearly continuous measurements of atmospheric thermodynamic and dynamic information within a weather cube, specifically the atmospheric temperature, moisture, and wind information at different pressure levels that are critical for improving high-impact weather (HIW) nowcasting and numerical weather prediction (NWP). Geostationary hyperspectral IR sounders (GeoHIS) have been on board China’s Fengyun-4 series since 2016 and will be on board Europe’s Meteosat Third Generation (MTG) series in the 2024 time frame; the United States and other countries are also planning to include GeoHIS instruments on their next generation of geostationary weather satellites. Although availability of on-orbit GeoHIS data are limited currently, studies have been conducted and progress has been made on developing the applications of high-temporal-resolution GeoHIS observations. These include but are not limited to deriving three-dimensional wind fields for nowcasting and NWP applications, trending atmospheric instability for warning in preconvective environments, conducting impact studies with data from the experimental Geostationary Interferometric Infrared Sounder (GIIRS) on board Fengyun-4A, preparing observing system simulation experiments (OSSEs), and monitoring diurnal variation of atmospheric composition. This paper provides an overview of the current applications of GeoHIS, discusses the data processing challenges, and provides perspectives on future development. The purpose is to provide direction on utilization of the current and assist preparation for the upcoming GeoHIS observations for nowcasting, NWP and other applications.
Abstract
A hyperspectral infrared (IR) sounder from geostationary orbit provides nearly continuous measurements of atmospheric thermodynamic and dynamic information within a weather cube, specifically the atmospheric temperature, moisture, and wind information at different pressure levels that are critical for improving high-impact weather (HIW) nowcasting and numerical weather prediction (NWP). Geostationary hyperspectral IR sounders (GeoHIS) have been on board China’s Fengyun-4 series since 2016 and will be on board Europe’s Meteosat Third Generation (MTG) series in the 2024 time frame; the United States and other countries are also planning to include GeoHIS instruments on their next generation of geostationary weather satellites. Although availability of on-orbit GeoHIS data are limited currently, studies have been conducted and progress has been made on developing the applications of high-temporal-resolution GeoHIS observations. These include but are not limited to deriving three-dimensional wind fields for nowcasting and NWP applications, trending atmospheric instability for warning in preconvective environments, conducting impact studies with data from the experimental Geostationary Interferometric Infrared Sounder (GIIRS) on board Fengyun-4A, preparing observing system simulation experiments (OSSEs), and monitoring diurnal variation of atmospheric composition. This paper provides an overview of the current applications of GeoHIS, discusses the data processing challenges, and provides perspectives on future development. The purpose is to provide direction on utilization of the current and assist preparation for the upcoming GeoHIS observations for nowcasting, NWP and other applications.
Abstract
A method and a passive microwave retrieval algorithm have been developed to retrieve upper-tropospheric water vapor (UTW) from Special Sensor Microwave Water Vapor Profiler (SSM/T-2) measurements taken at three discrete frequencies near the 183-GHz water vapor line. The algorithm is based on physical relaxation utilizing statistical covariance information to provide initial-guess profiles and to constrain the updating step in the relaxation process. The scheme incorporates a method to remove SSM/T-2 brightness temperature bias in comparison with collocated simulated brightness temperatures. Correction functions are designed for the three SSM/T-2 183-GHz channels. The algorithm is validated against radiosonde observations and collocated SSM/T-2 brightness temperatures. Under clear-sky and nonprecipitating-cloud conditions, the UTW retrievals exhibit an rms error of 0.68 kg m−2 with integrated water vapor biases below 5% for the upper-tropospheric layers of 700–500 and 500–200 hPa. The retrieval provides an independent source of satellite-derived water vapor information in the upper troposphere, distinct from upper-tropospheric humidity information retrieved from thermal infrared (IR) measurements around the 6.3-μm water vapor absorption band. The microwave retrievals can then be used to cross-check IR retrievals and/or to augment IR retrievals, dependent upon the problem at hand.
Abstract
A method and a passive microwave retrieval algorithm have been developed to retrieve upper-tropospheric water vapor (UTW) from Special Sensor Microwave Water Vapor Profiler (SSM/T-2) measurements taken at three discrete frequencies near the 183-GHz water vapor line. The algorithm is based on physical relaxation utilizing statistical covariance information to provide initial-guess profiles and to constrain the updating step in the relaxation process. The scheme incorporates a method to remove SSM/T-2 brightness temperature bias in comparison with collocated simulated brightness temperatures. Correction functions are designed for the three SSM/T-2 183-GHz channels. The algorithm is validated against radiosonde observations and collocated SSM/T-2 brightness temperatures. Under clear-sky and nonprecipitating-cloud conditions, the UTW retrievals exhibit an rms error of 0.68 kg m−2 with integrated water vapor biases below 5% for the upper-tropospheric layers of 700–500 and 500–200 hPa. The retrieval provides an independent source of satellite-derived water vapor information in the upper troposphere, distinct from upper-tropospheric humidity information retrieved from thermal infrared (IR) measurements around the 6.3-μm water vapor absorption band. The microwave retrievals can then be used to cross-check IR retrievals and/or to augment IR retrievals, dependent upon the problem at hand.
This paper introduces the new generation of European geostationary meteorological satellites, Meteosat Second Generation (MSG), scheduled for launch in summer 2002. MSG is spin stabilized, as is the current Meteosat series, however, with greatly enhanced capabilities. The 12-channel imager, called the Spinning Enhanced Visible and Infrared Imager (SEVIRI), observes the full disk of the earth with an unprecedented repeat cycle of 15 min. SEVIRI has eight channels in the thermal infrared (IR) at 3.9,6.2,7.3, 8.7, 9.7, 10.8, 12.0, and 13.4 μum; three channels in the solar spectrum at 0.6, 0.8, and 1.6 μm; and a broadband high-resolution visible channel. The high-resolution visible channel has a spatial resolution of 1.67 km at nadir; pixels are oversampled with a factor of 1.67 corresponding to a sampling distance of 1 km at nadir. The corresponding values for the eight thermal IR and the other three solar channels are 4.8-km spatial resolution at nadir and an oversampling factor of 1.6, which corresponds to a sampling distance of 3 km at nadir.
Radiometric performance of all channels exceeds specifications. Thermal IR channels have an onboard calibration with an accuracy better than 1 K. Solar channels are calibrated with an operational vicarious procedure aiming at an accuracy of 5%. Meteorological products are derived in the so-called Satellite Application Facilities (SAF) and in the central Meteorological Product Extraction Facility (MPEF) at the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) in Darmstadt, Germany. The products support nowcasting, numerical weather prediction (NWP), and climatological applications. The most important product for NWP, the atmospheric motion vectors, are derived from different channels to improve data coverage and quality. Novel products are, among others, indices describing the instability of the clear atmosphere and total column ozone. The paper also discusses the use of MSG for future applications, in particular, observations of the rapid cloud development, cloud microphysics, and land applications are considered as areas of high potential. As an additional scientific payload, MSG carries a Geostationary Earth Radiation Budget (GERB) instrument observing the broadband thermal infrared and solar radiances exiting the earth-atmosphere system.
This paper introduces the new generation of European geostationary meteorological satellites, Meteosat Second Generation (MSG), scheduled for launch in summer 2002. MSG is spin stabilized, as is the current Meteosat series, however, with greatly enhanced capabilities. The 12-channel imager, called the Spinning Enhanced Visible and Infrared Imager (SEVIRI), observes the full disk of the earth with an unprecedented repeat cycle of 15 min. SEVIRI has eight channels in the thermal infrared (IR) at 3.9,6.2,7.3, 8.7, 9.7, 10.8, 12.0, and 13.4 μum; three channels in the solar spectrum at 0.6, 0.8, and 1.6 μm; and a broadband high-resolution visible channel. The high-resolution visible channel has a spatial resolution of 1.67 km at nadir; pixels are oversampled with a factor of 1.67 corresponding to a sampling distance of 1 km at nadir. The corresponding values for the eight thermal IR and the other three solar channels are 4.8-km spatial resolution at nadir and an oversampling factor of 1.6, which corresponds to a sampling distance of 3 km at nadir.
Radiometric performance of all channels exceeds specifications. Thermal IR channels have an onboard calibration with an accuracy better than 1 K. Solar channels are calibrated with an operational vicarious procedure aiming at an accuracy of 5%. Meteorological products are derived in the so-called Satellite Application Facilities (SAF) and in the central Meteorological Product Extraction Facility (MPEF) at the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) in Darmstadt, Germany. The products support nowcasting, numerical weather prediction (NWP), and climatological applications. The most important product for NWP, the atmospheric motion vectors, are derived from different channels to improve data coverage and quality. Novel products are, among others, indices describing the instability of the clear atmosphere and total column ozone. The paper also discusses the use of MSG for future applications, in particular, observations of the rapid cloud development, cloud microphysics, and land applications are considered as areas of high potential. As an additional scientific payload, MSG carries a Geostationary Earth Radiation Budget (GERB) instrument observing the broadband thermal infrared and solar radiances exiting the earth-atmosphere system.
Abstract
The displacement of clouds in successive satellite images reflects the atmospheric circulation at various scales. The main application of the satellite-derived cloud-motion vectors is their use as winds in the data analysis for numerical weather prediction. At low latitudes in particular they constitute an indispensible data source for numerical weather prediction.
This paper describes the operational method of deriving cloud-motion winds (CMW) from the IR image (10.512.5 µm) of the European geostationary Meteostat satellites. The method is automatic, that is, the cloud tracking uses cross correlation and the height assignment is based on satellite observed brightness temperature and a forecast temperature profile. Semitransparent clouds undergo a height correction based on radiative forward calculations and simultaneous radiance observations in both the IR and water vapor (5.77.1 µm) channel. Cloud-motion winds are subject to various quality checks that include manual quality control as the last step. Typically about 3000 wind vectors are produced per day over four production cycles.
This paper documents algorithm changes and improvements made to the operational CMWs over the last five years. The improvements are shown by long-term comparisons with both collocated radiosondes and the first guess of the forecast model of the European Centre for Medium-Range Weather Forecasts. In particular, the height assignment of a wind vector and radiance filtering techniques preceding the cloud tracking have ameliorated the errors in Meteostat winds. The slow speed bias of high-level CMWs (<400 hPa) in comparison to radiosonde winds have been reduced from about 4 to 1.3 m s−1 for a mean wind speed of 24 m s−1. Correspondingly, the rms vectors error of Meteosat high-level CMWs decreased from about 7.8 to 5 m s−1. Medium- and low-level CMWs were also significantly improved.
Abstract
The displacement of clouds in successive satellite images reflects the atmospheric circulation at various scales. The main application of the satellite-derived cloud-motion vectors is their use as winds in the data analysis for numerical weather prediction. At low latitudes in particular they constitute an indispensible data source for numerical weather prediction.
This paper describes the operational method of deriving cloud-motion winds (CMW) from the IR image (10.512.5 µm) of the European geostationary Meteostat satellites. The method is automatic, that is, the cloud tracking uses cross correlation and the height assignment is based on satellite observed brightness temperature and a forecast temperature profile. Semitransparent clouds undergo a height correction based on radiative forward calculations and simultaneous radiance observations in both the IR and water vapor (5.77.1 µm) channel. Cloud-motion winds are subject to various quality checks that include manual quality control as the last step. Typically about 3000 wind vectors are produced per day over four production cycles.
This paper documents algorithm changes and improvements made to the operational CMWs over the last five years. The improvements are shown by long-term comparisons with both collocated radiosondes and the first guess of the forecast model of the European Centre for Medium-Range Weather Forecasts. In particular, the height assignment of a wind vector and radiance filtering techniques preceding the cloud tracking have ameliorated the errors in Meteostat winds. The slow speed bias of high-level CMWs (<400 hPa) in comparison to radiosonde winds have been reduced from about 4 to 1.3 m s−1 for a mean wind speed of 24 m s−1. Correspondingly, the rms vectors error of Meteosat high-level CMWs decreased from about 7.8 to 5 m s−1. Medium- and low-level CMWs were also significantly improved.
This paper describes the results from a collaborative study between the European Space Operations Center, the European Organization for the Exploitation of Meteorological Satellites, the National Oceanic and Atmospheric Administration, and the Cooperative Institute for Meteorological Satellite Studies investigating the relationship between satellite-derived monthly mean fields of wind and humidity in the upper troposphere for March 1994. Three geostationary meteorological satellites GOES-7, Meteosat-3, and Meteosat-5 are used to cover an area from roughly 160°W to 50°E. The wind fields are derived from tracking features in successive images of upper-tropospheric water vapor (WV) as depicted in the 6.5-μ absorption band. The upper-tropospheric relative humidity (UTH) is inferred from measured water vapor radiances with a physical retrieval scheme based on radiative forward calculations.
Quantitative information on large-scale circulation patterns in the upper troposphere is possible with the dense spatial coverage of the WV wind vectors. The monthly mean wind field is used to estimate the large-scale divergence; values range between about −5 × 10−6 and 5 × 10−6 sec−1 when averaged over a scale length of about 1000–2000 km. The spatial patterns of the UTH field and the divergence of the wind field closely resemble one another, suggesting that UTH patterns are principally determined by the large-scale circulation.
Since the upper-tropospheric humidity absorbs upwelling radiation from lower-tropospheric levels and therefore contributes significantly to the atmospheric greenhouse effect, this work implies that studies on the climate relevance of water vapor should include threedimensional modeling of the atmospheric dynamics. The fields of UTH and WV winds are useful parameters for a climate-monitoring system based on satellite data. The results from this 1-month analysis suggest the desirability of further GOES and Meteosat studies to characterize the changes in the upper-tropospheric moisture sources and sinks over the past decade.
This paper describes the results from a collaborative study between the European Space Operations Center, the European Organization for the Exploitation of Meteorological Satellites, the National Oceanic and Atmospheric Administration, and the Cooperative Institute for Meteorological Satellite Studies investigating the relationship between satellite-derived monthly mean fields of wind and humidity in the upper troposphere for March 1994. Three geostationary meteorological satellites GOES-7, Meteosat-3, and Meteosat-5 are used to cover an area from roughly 160°W to 50°E. The wind fields are derived from tracking features in successive images of upper-tropospheric water vapor (WV) as depicted in the 6.5-μ absorption band. The upper-tropospheric relative humidity (UTH) is inferred from measured water vapor radiances with a physical retrieval scheme based on radiative forward calculations.
Quantitative information on large-scale circulation patterns in the upper troposphere is possible with the dense spatial coverage of the WV wind vectors. The monthly mean wind field is used to estimate the large-scale divergence; values range between about −5 × 10−6 and 5 × 10−6 sec−1 when averaged over a scale length of about 1000–2000 km. The spatial patterns of the UTH field and the divergence of the wind field closely resemble one another, suggesting that UTH patterns are principally determined by the large-scale circulation.
Since the upper-tropospheric humidity absorbs upwelling radiation from lower-tropospheric levels and therefore contributes significantly to the atmospheric greenhouse effect, this work implies that studies on the climate relevance of water vapor should include threedimensional modeling of the atmospheric dynamics. The fields of UTH and WV winds are useful parameters for a climate-monitoring system based on satellite data. The results from this 1-month analysis suggest the desirability of further GOES and Meteosat studies to characterize the changes in the upper-tropospheric moisture sources and sinks over the past decade.
The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Polar System is the European contribution to the European–U.S. operational polar meteorological satellite system (Initial Joint Polar System). It serves the midmorning (a.m.) orbit 0930 Local Solar Time (LST) descending node. The EUMETSAT satellites of this new polar system are the Meteorological Operational Satellite (Metop) satellites, jointly developed with ESA. Three Metop satellites are foreseen for at least 14 years of operation from 2006 onward and will support operational meteorology and climate monitoring.
The Metop Programme includes the development of some instruments, such as the Global Ozone Monitoring Experiment, Advanced Scatterometer, and the Global Navigation Satellite System (GNSS) Receiver for Atmospheric Sounding, which are advanced instruments of recent successful research missions. Core components of the Metop payload, common with the payload on the U.S. satellites, are the Advanced Very High Resolution Radiometer and the Advanced Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder (ATOVS) package, composed of the High Resolution Infrared Radiation Sounder (HIRS), Advanced Microwave Sounding Unit A (AMSU-A), and Microwave Humidity Sounder (MHS). They provide continuity to the NOAA-K, -L, -M satellite series (in orbit known as NOAA-15, -16 and -17). MHS is a EUMETSAT development and replaces the AMSU-B instrument in the ATOVS suite. The Infrared Atmospheric Sounding Interferometer (IASI) instrument, developed by the Centre National d'Etudes Spatiales, provides hyperspectral resolution infrared sounding capabilities and represents new technology in operational satellite remote sensing.
The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Polar System is the European contribution to the European–U.S. operational polar meteorological satellite system (Initial Joint Polar System). It serves the midmorning (a.m.) orbit 0930 Local Solar Time (LST) descending node. The EUMETSAT satellites of this new polar system are the Meteorological Operational Satellite (Metop) satellites, jointly developed with ESA. Three Metop satellites are foreseen for at least 14 years of operation from 2006 onward and will support operational meteorology and climate monitoring.
The Metop Programme includes the development of some instruments, such as the Global Ozone Monitoring Experiment, Advanced Scatterometer, and the Global Navigation Satellite System (GNSS) Receiver for Atmospheric Sounding, which are advanced instruments of recent successful research missions. Core components of the Metop payload, common with the payload on the U.S. satellites, are the Advanced Very High Resolution Radiometer and the Advanced Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder (ATOVS) package, composed of the High Resolution Infrared Radiation Sounder (HIRS), Advanced Microwave Sounding Unit A (AMSU-A), and Microwave Humidity Sounder (MHS). They provide continuity to the NOAA-K, -L, -M satellite series (in orbit known as NOAA-15, -16 and -17). MHS is a EUMETSAT development and replaces the AMSU-B instrument in the ATOVS suite. The Infrared Atmospheric Sounding Interferometer (IASI) instrument, developed by the Centre National d'Etudes Spatiales, provides hyperspectral resolution infrared sounding capabilities and represents new technology in operational satellite remote sensing.