Search Results

You are looking at 11 - 20 of 30 items for

  • Author or Editor: John R. Anderson x
  • Refine by Access: All Content x
Clear All Modify Search
John R. Anderson
,
Duane E. Stevens
, and
Paul R. Julian

Abstract

In recent years there has been a great deal of interest in a quasi-periodic tropical oscillation of zonal winds, which was first reported by Madden and Julian. An attempt to determine the temporal variation of the oscillation parameters is presented here. Using a 4-year duration global time series and a 25-year station time series, we find that although the nonseasonal variations are large, any seasonal cycle in the oscillation amplitude and frequency must be very small. The small seasonal signal in the oscillation frequency seems to argue against explanations for the time scale based on Doppler-shifted traveling waves.

Full access
Christopher R. Hain
,
John R. Mecikalski
, and
Martha C. Anderson

Abstract

A retrieval of available water fraction ( f AW) is proposed using surface flux estimates from satellite-based thermal infrared (TIR) imagery and the Atmosphere–Land Exchange Inversion (ALEXI) model. Available water serves as a proxy for soil moisture conditions, where f AW can be converted to volumetric soil moisture through two soil texture dependents parameters—field capacity and permanent wilting point. The ability of ALEXI to provide valuable information about the partitioning of the surface energy budget, which can be largely dictated by soil moisture conditions, accommodates the retrieval of an average f AW over the surface to the rooting depth of the active vegetation. For this method, the fraction of actual to potential evapotranspiration ( f PET) is computed from an ALEXI estimate of latent heat flux and potential evapotranspiration (PET). The ALEXI-estimated f PET can be related to f AW in the soil profile. Four unique f PET to f AW relationships are proposed and validated against Oklahoma Mesonet soil moisture observations within a series of composite periods during the warm seasons of 2002–04. Using the validation results, the most representative of the four relationships is chosen and shown to produce reasonable (mean absolute errors values less than 20%) f AW estimates when compared to Oklahoma Mesonet observations. Quantitative comparisons between ALEXI and modeled f AW estimates from the Eta Data Assimilation System (EDAS) are also performed to assess the possible advantages of using ALEXI soil moisture estimates within numerical weather predication (NWP) simulations. This TIR retrieval technique is advantageous over microwave techniques because of the ability to indirectly sense f AW—and hence soil moisture conditions—extending into the root-zone layer. Retrievals are also possible over dense vegetation cover and are available on spatial resolutions on the order of the native TIR imagery. A notable disadvantage is the inability to retrieve f AW conditions through cloud cover.

Full access
John R. Gyakum
,
John R. Anderson
,
Richard H. Grumm
, and
Elissa L. Gruner

Abstract

An eight year sample of cold-season (1 October through 31 March) extratropical cyclones in the, Pacific Ocean basin is used to study central pressure changes and life cycle characteristics.

We find that over 90% of the cyclones passing through the area of the Kuroshio Current intensify in this region. Corresponding percentages in excess of 60% extend from the Kuroshio, south of 45°N, eastward to 130°W. Mean 24-h central pressure falls of all cyclones exceed 9 mb through the entire basin west of 140°W in the latitude band 30° to 50°N.

A statistical analysis of 24-h central pressure changes is performed on all cyclones within our domain. A frequency distribution of 1996 cases of 24-h maximum deepening reveals statistically significant departures from a Gaussian distribution, with the coefficient of skewness substantially negative. We also find similarly significant departures from normal in a frequency distribution of all 24-h central pressure changes, in spite of the fact that this distribution would be expected to have relatively fewer nonlinear interactions of processes associated with maximum deepening. A stratification of these data into ten degree latitude bands reveals that the ocean-dominated areas south of 60°N all have significant departures from the normal distributions with significantly large negative values of skewness. The land and ice-dominated region between 60° and 70°N has a deepening rate distribution that is approximately Gaussian with coefficients of skewness and kurtosis within the confidence limits of a normal distribution. These results suggest that the underlying ocean surface may be responsible for the significant departures of the pressure change distribution from a normal distribution.

We find that explosively developing cyclones (defined as those systems whose central pressure falls at least 24 mb in 24 h at 45°N) have longer lifetimes than the more conventional lows. Approximately 74% of the explosive cyclones last for at least four days. Only 21% of the nonexplosive cases exist for as long as four days. The vast majority of rapid deepeners commence their maximum intensification within 24 h of their initial formation. Thus, a correct analysis and forecast of a newly formed cyclone appears crucial to a successful explosive cyclone simulation.

Although cyclone formation areas cover vast areas of the Pacific, especially those east of Japan, south of Alaska, and the surroundings of the Kamchatka Peninsula, explosive cyclone formation positions are almost exclusively south of 50°N, concentrated east of the Asiatic continent, and in an area between 150° and 160°W. The “bomb” maximum deepening positions are located in areas slightly to the north and east of their formation positions. Dissipation positions, while concentrated in the Gulf of Alaska, the northeast Pacific, and in an area west of Kamchatka for all systems, are almost exclusively confined to areas north of 50°N for the rapidly deepening cyclones.

Full access
John R. Mecikalski
,
George R. Diak
,
Martha C. Anderson
, and
John M. Norman

Abstract

A simple model of energy exchange between the land surface and the atmospheric boundary layer, driven by input that can be derived primarily through remote sensing, is described and applied over continental scales at a horizontal resolution of 10 km. Surface flux partitioning into sensible and latent heating is guided by time changes in land surface brightness temperatures, which can be measured from a geostationary satellite platform such as the Geostationary Operational Environmental Satellite. Other important inputs, including vegetation cover and type, can be derived using the Normalized Difference Vegetation Index in combination with vegetation and land use information. Previous studies have shown that this model performs well on small spatial scales, in comparison with surface flux measurements acquired during several field experiments. However, because the model requires only a modicum of surface-based measurements and is designed to be computationally efficient, it is particularly well suited for regional- or continental-scale applications. The input data assembly process for regional-scale applications is outlined. Model flux estimates for the central United States are compared with climatological moisture and vegetation patterns, as well as with surface-based flux measurements acquired during the Southern Great Plains (SGP-97) Hydrology Experiment. These comparisons are quite promising.

Full access
Leigh G. Orf
,
John R. Anderson
, and
Jerry M. Straka

Abstract

A parameter study of colliding microburst outflows is performed using a high-resolution three-dimensional model. The colliding microburst pairs me simulated in a domain of 18 km × 16 km × 4.25 km with 50-m resolution. Microburst pairs are examined in varying space and time separations, and the authors find that for certain geometries strong elevated wind fields are generated from the interactions between outflows. For a narrow range of space-time geometries, this elevated wind field is extremely divergent. An examination of the F-factor aircraft hazard parameter reveals that both the divergent wind fields and microburst downdraft cores are regions of danger to jet aircraft. Trajectory analysis reveals that the air composing the elevated jets can be traced back to the shallow outflow formed beneath each microburst core. An analysis of the parcel kinetic energy budget indicates that the pressure domes beneath and between the microbursts are the primary mechanisms for directing energy into the elevated jets.

Full access
Jason A. Otkin
,
Martha C. Anderson
,
John R. Mecikalski
, and
George R. Diak

Abstract

Reliable procedures that accurately map surface insolation over large domains at high spatial and temporal resolution are a great benefit for making the predictions of potential and actual evapotranspiration that are required by a variety of hydrological and agricultural applications. Here, estimates of hourly and daily integrated insolation at 20-km resolution, based on Geostationary Operational Environmental Satellite (GOES) visible imagery are compared to pyranometer measurements made at 11 sites in the U.S. Climate Reference Network (USCRN) over a continuous 15-month period. Such a comprehensive survey is necessary in order to examine the accuracy of the satellite insolation estimates over a diverse range of seasons and land surface types. The relatively simple physical model of insolation that is tested here yields good results, with seasonally averaged model errors of 62 (19%) and 15 (10%) W m−2 for hourly and daily-averaged insolation, respectively, including both clear- and cloudy-sky conditions. This level of accuracy is comparable, or superior, to results that have been obtained with more complex models of atmospheric radiative transfer. Model performance can be improved in the future by addressing a small elevation-related bias in the physical model, which is likely the result of inaccurate model precipitable water inputs or cloud-height assessments.

Full access
Karen H. Rosenlof
,
Duane E. Stevens
,
John R. Anderson
, and
Paul E. Ciesielski

Abstract

The term Walker Circulation is used to refer to the zonal overturning across the equatorial Pacific driven by enhanced convection over the Indonesian region. In this work, an attempt is made to simulate the Walker Circulation using a linear model that includes a cumulus friction parameterization. The work of Geisler is extended by including a realistic mean zonal wind field obtained from the FGGE dataset and a prescribed mean Hadley cell that is computed from an analytical streamfunction.

The model is forced by a stationary tropical heat source. The sensitivity of the model circulation to changes in the basic state is examined. Model results show that the inclusion of a nonzero mean zonal wind field tends to enhance the extratropical response in the winter hemisphere. Including a cumulus friction parameterization tends to damp the zonal wind response near the heating center and also lower the level of zero zonal wind in the model Walker Circulation.

Including a mean Hadley cell in the basic state has the greatest effect on the model circulation in the tropics. It acts to raise the level of zero wind which makes the model circulation better resemble the observed Walker Circulation. Advection by the mean vertical velocity field is found to be a major term in the u-momentum equation and is of opposite sign from the largest cumulus friction term. Results indicate that when cumulus friction is included in a linear model calculation, a mean vertical velocity field should also be included.

When the effects of the zonal mean winds and the Hadley Cell/cumulus friction terms are included the model response resembles the observed tropical and subtropical responses to the El Niño ocean temperature anomaly.

Full access
Martha C. Anderson
,
Christopher Hain
,
Brian Wardlow
,
Agustin Pimstein
,
John R. Mecikalski
, and
William P. Kustas

Abstract

The reliability of standard meteorological drought indices based on measurements of precipitation is limited by the spatial distribution and quality of currently available rainfall data. Furthermore, they reflect only one component of the surface hydrologic cycle, and they cannot readily capture nonprecipitation-based moisture inputs to the land surface system (e.g., irrigation) that may temper drought impacts or variable rates of water consumption across a landscape. This study assesses the value of a new drought index based on remote sensing of evapotranspiration (ET). The evaporative stress index (ESI) quantifies anomalies in the ratio of actual to potential ET (PET), mapped using thermal band imagery from geostationary satellites. The study investigates the behavior and response time scales of the ESI through a retrospective comparison with the standardized precipitation indices and Palmer drought index suite, and with drought classifications recorded in the U.S. Drought Monitor for the 2000–09 growing seasons. Spatial and temporal correlation analyses suggest that the ESI performs similarly to short-term (up to 6 months) precipitation-based indices but can be produced at higher spatial resolution and without requiring any precipitation data. Unique behavior is observed in the ESI in regions where the evaporative flux is enhanced by moisture sources decoupled from local rainfall: for example, in areas of intense irrigation or shallow water table. Normalization by PET serves to isolate the ET signal component responding to soil moisture variability from variations due to the radiation load. This study suggests that the ESI is a useful complement to the current suite of drought indicators, with particular added value in parts of the world where rainfall data are sparse or unreliable.

Full access
George R. Diak
,
John R. Mecikalski
,
Martha C. Anderson
,
John M. Norman
,
William P. Kustas
,
Ryan D. Torn
, and
Rebecca L. DeWolf

Since the advent of the meteorological satellite, a large research effort within the community of earth scientists has been directed at assessing the components of the land surface energy balance from space. The development of these techniques from first efforts to the present time are reviewed, and the integrated system used to estimate the radiative and turbulent land surface fluxes is described. This system is now running in real time over the continental United States at a resolution of 10 km, producing daily and time-integrated flux components.

Full access
Martha C. Anderson
,
J. M. Norman
,
William P. Kustas
,
Fuqin Li
,
John H. Prueger
, and
John R. Mecikalski

Abstract

The effects of nonrandom leaf area distributions on surface flux predictions from a two-source thermal remote sensing model are investigated. The modeling framework is applied at local and regional scales over the Soil Moisture–Atmosphere Coupling Experiment (SMACEX) study area in central Iowa, an agricultural landscape that exhibits foliage organization at a variety of levels. Row-scale clumping in area corn- and soybean fields is quantified as a function of view zenith and azimuth angles using ground-based measurements of canopy architecture. The derived clumping indices are used to represent subpixel clumping in Landsat cover estimates at 30-m resolution, which are then aggregated to the 5-km scale of the regional model, reflecting field-to-field variations in vegetation amount. Consideration of vegetation clumping within the thermal model, which affects the relationship between surface temperature and leaf area inputs, significantly improves model estimates of sensible heating at both local and watershed scales in comparison with eddy covariance data collected by aircraft and with a ground-based tower network. These results suggest that this economical approach to representing subpixel leaf area hetereogeneity at multiple scales within the two-source modeling framework works well over the agricultural landscape studied here.

Full access