Search Results

You are looking at 11 - 14 of 14 items for

  • Author or Editor: Jonathan D. Kahl x
  • Refine by Access: All Content x
Clear All Modify Search
Suzanne M. Skony, Jonathan D. W. Kahl, and Nina A. Zaitseva


The boundary layer structure measured by 402 pairs of approximately collocated radiosonde and dropsonde temperature profiles over the Arctic Ocean during the period 1957–61 is examined. The radiosonde profiles were obtained at the Russian drifting ice camps “North Pole 7” and “North Pole 8,” and the dropsonde profiles were measured during the United States Air Force “Ptarmigan” series of weather reconnaissance flights. The boundary layer structure is characterized by the features of the low-level tropospheric temperature inversion.

The results indicate that the dropsonde soundings, although containing relatively few measurement levels, contain sufficient vertical resolution to characterize the temperature inversion. Systematic differences were noted in wintertime inversion features and near-surface temperatures as measured by dropsondes and radiosondes. These differences are attributed to contrasting temperature lag errors accompanying ascending and descending sensors.

Full access
Jonathan D. W. Kahl, Brandon R. Selbig, and Austin R. Harris


Wind gusts are common to everyday life and affect a wide range of interests including wind energy, structural design, forestry, and fire danger. Strong gusts are a common environmental hazard that can damage buildings, bridges, aircraft, and trains, and interrupt electric power distribution, air traffic, waterways transport, and port operations. Despite representing the component of wind most likely to be associated with serious and costly hazards, reliable forecasts of peak wind gusts have remained elusive. A project at the University of Wisconsin–Milwaukee is addressing the need for improved peak gust forecasts with the development of the meteorologically stratified gust factor (MSGF) model. The MSGF model combines gust factors (the ratio of peak wind gust to average wind speed) with wind speed and direction forecasts to predict hourly peak wind gusts. The MSGF method thus represents a simple, viable option for the operational prediction of peak wind gusts. Here we describe the results of a project designed to provide the site-specific gust factors necessary for operational use of the MSGF model at a large number of locations across the United States. Gust web diagrams depicting the wind speed– and wind direction–stratified gust factors, as well as peak gust climatologies, are presented for all sites analyzed.

Full access
Jonathan D. Kahl, Mark C. Serreze, Spencer Shiotani, Suzanne M. Skony, and Russell C. Schnell

Two new databases containing Arctic in situ meteorological soundings have been constructed and are now available for distribution to interested researchers. The Historical Arctic Rawinsonde Archive is a comprehensive collection of over 1.2 million rawinsonde soundings north of 65°N. For most stations the record begins in 1958 and extends to 1987; however, for some stations the record begins as early as 1948. The Ptarmigan Dropsonde Archive contains more than 10 000 lower-tropospheric soundings over the Beaufort Sea and western Arctic Ocean during the period 1950–1961.

Full access
Jonathan D. W. Kahl, Nina A. Zaitseva, V. Khattatov, R. C. Schnell, Dina M. Bacon, Jason Bacon, V. Radionov, and M. C. Serreze

An historical archive of over 25 000 radiosonde observations from the former Soviet “North Pole” series of drifting ice stations has been compiled and made available to interested researchers. This archive is the only long-term set of meteorological sounding data over the Arctic Ocean. The digital archive is a result of the multiyear, collaborative efforts of a group of United States and Russian scientists and keypunch operators working under the auspices of Working Group VIII, an area of study within the United States–Russian Federation Agreement for Protection of the Environment and Natural Resources. The archive contains soundings from 21 drifting stations over the period 1954–90 and is being distributed by the National Snow and Ice Data Center in Boulder, Colorado.

Full access