Search Results
You are looking at 11 - 20 of 24 items for
- Author or Editor: Joseph A. Santanello Jr. x
- Refine by Access: All Content x
Abstract
Accurately representing land–atmosphere (LA) interactions and coupling in NWP systems remains a challenge. New observations, incorporated into models via assimilation or calibration, hold the promise of improved forecast skill, but erroneous model coupling can hinder the benefits of such activities. To better understand model representation of coupled interactions and feedbacks, this study demonstrates a novel framework for coupled calibration of the single column model (SCM) capability of the NASA Unified Weather Research and Forecasting (NU-WRF) system coupled to NASA’s Land Information System (LIS). The local land–atmosphere coupling (LoCo) process chain paradigm is used to assess the processes and connections revealed by calibration experiments. Two summer case studies in the U.S. Southern Great Plains are simulated in which LSM parameters are calibrated to diurnal observations of LoCo process chain components including 2-m temperature, 2-m humidity, surface fluxes (Bowen ratio), and PBL height. Results show a wide range of soil moisture and hydraulic parameter solutions depending on which LA variable (i.e., observation) is used for calibration, highlighting that improvement in either soil hydraulic parameters or initial soil moisture when not in tandem with the other can provide undesirable results. Overall, this work demonstrates that a process chain calibration approach can be used to assess LA connections, feedbacks, strengths, and deficiencies in coupled models, as well as quantify the potential impact of new sources of observations of land–PBL variables on coupled prediction.
Abstract
Accurately representing land–atmosphere (LA) interactions and coupling in NWP systems remains a challenge. New observations, incorporated into models via assimilation or calibration, hold the promise of improved forecast skill, but erroneous model coupling can hinder the benefits of such activities. To better understand model representation of coupled interactions and feedbacks, this study demonstrates a novel framework for coupled calibration of the single column model (SCM) capability of the NASA Unified Weather Research and Forecasting (NU-WRF) system coupled to NASA’s Land Information System (LIS). The local land–atmosphere coupling (LoCo) process chain paradigm is used to assess the processes and connections revealed by calibration experiments. Two summer case studies in the U.S. Southern Great Plains are simulated in which LSM parameters are calibrated to diurnal observations of LoCo process chain components including 2-m temperature, 2-m humidity, surface fluxes (Bowen ratio), and PBL height. Results show a wide range of soil moisture and hydraulic parameter solutions depending on which LA variable (i.e., observation) is used for calibration, highlighting that improvement in either soil hydraulic parameters or initial soil moisture when not in tandem with the other can provide undesirable results. Overall, this work demonstrates that a process chain calibration approach can be used to assess LA connections, feedbacks, strengths, and deficiencies in coupled models, as well as quantify the potential impact of new sources of observations of land–PBL variables on coupled prediction.
Abstract
Observing system simulation experiments (OSSEs) are often conducted to evaluate the worth of existing data and data yet to be collected from proposed new missions. As missions increasingly require a broader “Earth systems” focus, it is important that the OSSEs capture the potential benefits of the observations on end-use applications. Toward this end, the results from the OSSEs must also be evaluated with a suite of metrics that capture the value, uncertainty, and information content of the observations while factoring in both science and societal impacts. This article presents a soil moisture OSSE that employs simulated L-band measurements and assesses its utility toward improving drought and flood risk estimates using the NASA Land Information System (LIS). A decision-theory-based analysis is conducted to assess the economic utility of the observations toward improving these applications. The results suggest that the improvements in surface soil moisture, root-zone soil moisture, and total runoff fields obtained through the assimilation of L-band measurements are effective in providing improvements in the drought and flood risk assessments as well. The decision-theory analysis not only demonstrates the economic utility of observations but also shows that the use of probabilistic information from the model simulations is more beneficial compared to the use of corresponding deterministic estimates. The experiment also demonstrates the value of a comprehensive modeling environment such as LIS for conducting end-to-end OSSEs by linking satellite observations, physical models, data assimilation algorithms, and end-use application models in a single integrated framework.
Abstract
Observing system simulation experiments (OSSEs) are often conducted to evaluate the worth of existing data and data yet to be collected from proposed new missions. As missions increasingly require a broader “Earth systems” focus, it is important that the OSSEs capture the potential benefits of the observations on end-use applications. Toward this end, the results from the OSSEs must also be evaluated with a suite of metrics that capture the value, uncertainty, and information content of the observations while factoring in both science and societal impacts. This article presents a soil moisture OSSE that employs simulated L-band measurements and assesses its utility toward improving drought and flood risk estimates using the NASA Land Information System (LIS). A decision-theory-based analysis is conducted to assess the economic utility of the observations toward improving these applications. The results suggest that the improvements in surface soil moisture, root-zone soil moisture, and total runoff fields obtained through the assimilation of L-band measurements are effective in providing improvements in the drought and flood risk assessments as well. The decision-theory analysis not only demonstrates the economic utility of observations but also shows that the use of probabilistic information from the model simulations is more beneficial compared to the use of corresponding deterministic estimates. The experiment also demonstrates the value of a comprehensive modeling environment such as LIS for conducting end-to-end OSSEs by linking satellite observations, physical models, data assimilation algorithms, and end-use application models in a single integrated framework.
Abstract
An investigation of Tropical Cyclone (TC) Kelvin in February 2018 over northeast Australia was conducted to understand the mechanisms of the brown ocean effect (BOE) and to develop a comprehensive analysis framework for landfalling TCs in the process. NASA’s Land Information System (LIS) coupled to the NASA Unified WRF (NU-WRF) system was employed as the numerical model framework for 12 land/soil moisture perturbation experiments. Impacts of soil moisture and surface enthalpy flux conditions on TC Kelvin were investigated by closely evaluating simulated track and intensity, midlevel atmospheric thermodynamic properties, vertical wind shear, total precipitable water (TPW), and surface moisture flux. The results suggest that there were recognized differentiations among the sensitivity simulations as a result of land surface (e.g., soil moisture and texture) conditions. However, the intensification of TC Kelvin over land was more strongly related to atmospheric moisture advection and the diurnal cycle of solar radiation (i.e., radiative cooling) than to overall soil moisture conditions or surface fluxes. The analysis framework employed here for TC Kelvin can serve as a foundation to specifically quantify the factors governing the BOE. It also demonstrates that the BOE is not a binary influence (i.e., all or nothing), but instead operates in a continuum from largely to minimally influential such that it could be utilized to help improve prediction of inland effects for all landfalling TCs.
Abstract
An investigation of Tropical Cyclone (TC) Kelvin in February 2018 over northeast Australia was conducted to understand the mechanisms of the brown ocean effect (BOE) and to develop a comprehensive analysis framework for landfalling TCs in the process. NASA’s Land Information System (LIS) coupled to the NASA Unified WRF (NU-WRF) system was employed as the numerical model framework for 12 land/soil moisture perturbation experiments. Impacts of soil moisture and surface enthalpy flux conditions on TC Kelvin were investigated by closely evaluating simulated track and intensity, midlevel atmospheric thermodynamic properties, vertical wind shear, total precipitable water (TPW), and surface moisture flux. The results suggest that there were recognized differentiations among the sensitivity simulations as a result of land surface (e.g., soil moisture and texture) conditions. However, the intensification of TC Kelvin over land was more strongly related to atmospheric moisture advection and the diurnal cycle of solar radiation (i.e., radiative cooling) than to overall soil moisture conditions or surface fluxes. The analysis framework employed here for TC Kelvin can serve as a foundation to specifically quantify the factors governing the BOE. It also demonstrates that the BOE is not a binary influence (i.e., all or nothing), but instead operates in a continuum from largely to minimally influential such that it could be utilized to help improve prediction of inland effects for all landfalling TCs.
Abstract
Land–atmosphere (L–A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address model deficiencies, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land–PBL coupling at the process level. In this paper, a diagnosis of the nature and impacts of local land–atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of 2006 and 2007 in the U.S. southern Great Plains. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation is applied to the dry/wet regimes exhibited in this region, and in the process, a thorough evaluation of nine different land–PBL scheme couplings is conducted under the umbrella of a high-resolution regional modeling test bed. Results show that the sign and magnitude of errors in land surface energy balance components are sensitive to the choice of land surface model, regime type, and running mode. In addition, LoCo diagnostics show that the sensitivity of L–A coupling is stronger toward the land during dry conditions, while the PBL scheme coupling becomes more important during the wet regime. Results also demonstrate how LoCo diagnostics can be applied to any modeling system (e.g., reanalysis products) in the context of their integrated impacts on the process chain connecting the land surface to the PBL and in support of hydrological anomalies.
Abstract
Land–atmosphere (L–A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address model deficiencies, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land–PBL coupling at the process level. In this paper, a diagnosis of the nature and impacts of local land–atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of 2006 and 2007 in the U.S. southern Great Plains. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation is applied to the dry/wet regimes exhibited in this region, and in the process, a thorough evaluation of nine different land–PBL scheme couplings is conducted under the umbrella of a high-resolution regional modeling test bed. Results show that the sign and magnitude of errors in land surface energy balance components are sensitive to the choice of land surface model, regime type, and running mode. In addition, LoCo diagnostics show that the sensitivity of L–A coupling is stronger toward the land during dry conditions, while the PBL scheme coupling becomes more important during the wet regime. Results also demonstrate how LoCo diagnostics can be applied to any modeling system (e.g., reanalysis products) in the context of their integrated impacts on the process chain connecting the land surface to the PBL and in support of hydrological anomalies.
Abstract
Land–atmosphere interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture states. The degree of coupling between the land surface and PBL in numerical weather prediction and climate models remains largely unexplored and undiagnosed because of the complex interactions and feedbacks present across a range of scales. Furthermore, uncoupled systems or experiments [e.g., the Project for the Intercomparison of Land-Surface Parameterization Schemes (PILPS)] may lead to inaccurate water and energy cycle process understanding by neglecting feedback processes such as PBL-top entrainment. In this study, a framework for diagnosing local land–atmosphere coupling is presented using a coupled mesoscale model with a suite of PBL and land surface model (LSM) options along with observations during field experiments in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting Model (WRF) has been coupled to the Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. Within this framework, the coupling established by each pairing of the available PBL schemes in WRF with the LSMs in LIS is evaluated in terms of the diurnal temperature and humidity evolution in the mixed layer. The coevolution of these variables and the convective PBL are sensitive to and, in fact, integrative of the dominant processes that govern the PBL budget, which are synthesized through the use of mixing diagrams. Results show how the sensitivity of land–atmosphere interactions to the specific choice of PBL scheme and LSM varies across surface moisture regimes and can be quantified and evaluated against observations. As such, this methodology provides a potential pathway to study factors controlling local land–atmosphere coupling (LoCo) using the LIS–WRF system, which will serve as a test bed for future experiments to evaluate coupling diagnostics within the community.
Abstract
Land–atmosphere interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture states. The degree of coupling between the land surface and PBL in numerical weather prediction and climate models remains largely unexplored and undiagnosed because of the complex interactions and feedbacks present across a range of scales. Furthermore, uncoupled systems or experiments [e.g., the Project for the Intercomparison of Land-Surface Parameterization Schemes (PILPS)] may lead to inaccurate water and energy cycle process understanding by neglecting feedback processes such as PBL-top entrainment. In this study, a framework for diagnosing local land–atmosphere coupling is presented using a coupled mesoscale model with a suite of PBL and land surface model (LSM) options along with observations during field experiments in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting Model (WRF) has been coupled to the Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. Within this framework, the coupling established by each pairing of the available PBL schemes in WRF with the LSMs in LIS is evaluated in terms of the diurnal temperature and humidity evolution in the mixed layer. The coevolution of these variables and the convective PBL are sensitive to and, in fact, integrative of the dominant processes that govern the PBL budget, which are synthesized through the use of mixing diagrams. Results show how the sensitivity of land–atmosphere interactions to the specific choice of PBL scheme and LSM varies across surface moisture regimes and can be quantified and evaluated against observations. As such, this methodology provides a potential pathway to study factors controlling local land–atmosphere coupling (LoCo) using the LIS–WRF system, which will serve as a test bed for future experiments to evaluate coupling diagnostics within the community.
Abstract
Land–atmosphere (LA) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. In this study, the authors examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled Weather Research and Forecasting Model (WRF) forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through calibration of the Noah land surface model using the new optimization and uncertainty estimation subsystems in NASA's Land Information System (LIS-OPT/LIS-UE). The impact of the calibration on the 1) spinup of the land surface used as initial conditions and 2) the simulated heat and moisture states and fluxes of the coupled WRF simulations is then assessed. In addition, the sensitivity of this approach to the period of calibration (dry, wet, or average) is investigated. Results show that the offline calibration is successful in providing improved initial conditions and land surface physics for the coupled simulations and in turn leads to systematic improvements in land–PBL fluxes and near-surface temperature and humidity forecasts. Impacts are larger during dry regimes, but calibration during either primarily wet or dry periods leads to improvements in coupled simulations due to the reduction in land surface model bias. Overall, these results provide guidance on the questions of what, how, and when to calibrate land surface models for coupled model prediction.
Abstract
Land–atmosphere (LA) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. In this study, the authors examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled Weather Research and Forecasting Model (WRF) forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through calibration of the Noah land surface model using the new optimization and uncertainty estimation subsystems in NASA's Land Information System (LIS-OPT/LIS-UE). The impact of the calibration on the 1) spinup of the land surface used as initial conditions and 2) the simulated heat and moisture states and fluxes of the coupled WRF simulations is then assessed. In addition, the sensitivity of this approach to the period of calibration (dry, wet, or average) is investigated. Results show that the offline calibration is successful in providing improved initial conditions and land surface physics for the coupled simulations and in turn leads to systematic improvements in land–PBL fluxes and near-surface temperature and humidity forecasts. Impacts are larger during dry regimes, but calibration during either primarily wet or dry periods leads to improvements in coupled simulations due to the reduction in land surface model bias. Overall, these results provide guidance on the questions of what, how, and when to calibrate land surface models for coupled model prediction.
Abstract
In the United States, irrigation represents the largest consumptive use of freshwater and accounts for approximately one-third of total water usage. Irrigation impacts soil moisture and can ultimately influence clouds and precipitation through land–planetary boundary layer (PBL) coupling processes. This study utilizes NASA’s Land Information System (LIS) and the NASA Unified Weather Research and Forecasting Model (NU-WRF) framework to investigate the effects of drip, flood, and sprinkler irrigation methods on land–atmosphere interactions, including land–PBL coupling and feedbacks at the local scale. To initialize 2-day, 1-km WRF forecasts over the central Great Plains in a drier-than-normal (2006) and a wetter-than-normal year (2008), 5-yr irrigated LIS spinups were used. The offline and coupled simulation results show that regional irrigation impacts are sensitive to time, space, and method and that irrigation cools and moistens the surface over and downwind of irrigated areas, ultimately resulting in both positive and negative feedbacks on the PBL depending on the time of day and background climate conditions. Furthermore, the results portray the importance of both irrigation method physics and correct representation of several key components of land surface models, including accurate and timely land-cover and crop-type classification, phenology (greenness), and soil moisture anomalies (through a land surface model spinup) in coupled prediction models.
Abstract
In the United States, irrigation represents the largest consumptive use of freshwater and accounts for approximately one-third of total water usage. Irrigation impacts soil moisture and can ultimately influence clouds and precipitation through land–planetary boundary layer (PBL) coupling processes. This study utilizes NASA’s Land Information System (LIS) and the NASA Unified Weather Research and Forecasting Model (NU-WRF) framework to investigate the effects of drip, flood, and sprinkler irrigation methods on land–atmosphere interactions, including land–PBL coupling and feedbacks at the local scale. To initialize 2-day, 1-km WRF forecasts over the central Great Plains in a drier-than-normal (2006) and a wetter-than-normal year (2008), 5-yr irrigated LIS spinups were used. The offline and coupled simulation results show that regional irrigation impacts are sensitive to time, space, and method and that irrigation cools and moistens the surface over and downwind of irrigated areas, ultimately resulting in both positive and negative feedbacks on the PBL depending on the time of day and background climate conditions. Furthermore, the results portray the importance of both irrigation method physics and correct representation of several key components of land surface models, including accurate and timely land-cover and crop-type classification, phenology (greenness), and soil moisture anomalies (through a land surface model spinup) in coupled prediction models.
Abstract
Advances in satellite monitoring of the terrestrial water cycle have led to a concerted effort to assimilate soil moisture observations from various platforms into offline land surface models (LSMs). One principal but still open question is that of the ability of land data assimilation (LDA) to improve LSM initial conditions for coupled short-term weather prediction. In this study, the impact of assimilating Advanced Microwave Scanning Radiometer for EOS (AMSR-E) soil moisture retrievals on coupled WRF Model forecasts is examined during the summers of dry (2006) and wet (2007) surface conditions in the southern Great Plains. LDA is carried out using NASA’s Land Information System (LIS) and the Noah LSM through an ensemble Kalman filter (EnKF) approach. The impacts of LDA on the 1) soil moisture and soil temperature initial conditions for WRF, 2) land–atmosphere coupling characteristics, and 3) ambient weather of the coupled LIS–WRF simulations are then assessed. Results show that impacts of soil moisture LDA during the spinup can significantly modify LSM states and fluxes, depending on regime and season. Results also indicate that the use of seasonal cumulative distribution functions (CDFs) is more advantageous compared to the traditional annual CDF bias correction strategies. LDA performs consistently regardless of atmospheric forcing applied, with greater improvements seen when using coarser, global forcing products. Downstream impacts on coupled simulations vary according to the strength of the LDA impact at the initialization, where significant modifications to the soil moisture flux–PBL–ambient weather process chain are observed. Overall, this study demonstrates potential for future, higher-resolution soil moisture assimilation applications in weather and climate research.
Abstract
Advances in satellite monitoring of the terrestrial water cycle have led to a concerted effort to assimilate soil moisture observations from various platforms into offline land surface models (LSMs). One principal but still open question is that of the ability of land data assimilation (LDA) to improve LSM initial conditions for coupled short-term weather prediction. In this study, the impact of assimilating Advanced Microwave Scanning Radiometer for EOS (AMSR-E) soil moisture retrievals on coupled WRF Model forecasts is examined during the summers of dry (2006) and wet (2007) surface conditions in the southern Great Plains. LDA is carried out using NASA’s Land Information System (LIS) and the Noah LSM through an ensemble Kalman filter (EnKF) approach. The impacts of LDA on the 1) soil moisture and soil temperature initial conditions for WRF, 2) land–atmosphere coupling characteristics, and 3) ambient weather of the coupled LIS–WRF simulations are then assessed. Results show that impacts of soil moisture LDA during the spinup can significantly modify LSM states and fluxes, depending on regime and season. Results also indicate that the use of seasonal cumulative distribution functions (CDFs) is more advantageous compared to the traditional annual CDF bias correction strategies. LDA performs consistently regardless of atmospheric forcing applied, with greater improvements seen when using coarser, global forcing products. Downstream impacts on coupled simulations vary according to the strength of the LDA impact at the initialization, where significant modifications to the soil moisture flux–PBL–ambient weather process chain are observed. Overall, this study demonstrates potential for future, higher-resolution soil moisture assimilation applications in weather and climate research.
Abstract
Landfalling tropical cyclones (TCs) often decay rapidly due to a decrease in moisture and energy fluxes over land when compared to the ocean surface. Occasionally, however, these cyclones maintain intensity or reintensify over land. Post-landfall maintenance and intensification of TCs over land may be a result of fluxes of moisture and energy derived from anomalously wet soils. These soils act similarly to a warm sea surface, in a phenomenon coined the “brown ocean effect.” Tropical Storm (TS) Bill (2015) made landfall over a region previously moistened by anomalously heavy rainfall and displayed periods of reintensification and maintenance over land. This study evaluates the role of the brown ocean effect on the observed maintenance and intensification of TS Bill using a combination of existing and novel approaches, including the evaluation of precursor conditions at varying temporal scales and making use of composite backward trajectories. Comparisons were made to landfalling TCs with similar paths that did not undergo TC maintenance and/or intensification (TCMI) as well as to TS Erin (2007), a known TCMI case. We show that the antecedent environment prior to TS Bill was similar to other known TCMI cases, but drastically different from the non-TCMI cases analyzed in this study. Furthermore, we show that contributions of evapotranspiration to the overall water vapor budget were nonnegligible prior to TCMI cases and that evapotranspiration along storm inflow was significantly (p < 0.05) greater for TCMI cases than non-TCMI cases suggesting a potential upstream contribution from the land surface.
Abstract
Landfalling tropical cyclones (TCs) often decay rapidly due to a decrease in moisture and energy fluxes over land when compared to the ocean surface. Occasionally, however, these cyclones maintain intensity or reintensify over land. Post-landfall maintenance and intensification of TCs over land may be a result of fluxes of moisture and energy derived from anomalously wet soils. These soils act similarly to a warm sea surface, in a phenomenon coined the “brown ocean effect.” Tropical Storm (TS) Bill (2015) made landfall over a region previously moistened by anomalously heavy rainfall and displayed periods of reintensification and maintenance over land. This study evaluates the role of the brown ocean effect on the observed maintenance and intensification of TS Bill using a combination of existing and novel approaches, including the evaluation of precursor conditions at varying temporal scales and making use of composite backward trajectories. Comparisons were made to landfalling TCs with similar paths that did not undergo TC maintenance and/or intensification (TCMI) as well as to TS Erin (2007), a known TCMI case. We show that the antecedent environment prior to TS Bill was similar to other known TCMI cases, but drastically different from the non-TCMI cases analyzed in this study. Furthermore, we show that contributions of evapotranspiration to the overall water vapor budget were nonnegligible prior to TCMI cases and that evapotranspiration along storm inflow was significantly (p < 0.05) greater for TCMI cases than non-TCMI cases suggesting a potential upstream contribution from the land surface.
Abstract
Tropical Storm Bill produced over 400 mm of rainfall in portions of southern Oklahoma from 16 to 20 June 2015, adding to the catastrophic urban and river flooding that occurred throughout the region in the month prior to landfall. The unprecedented excessive precipitation event that occurred across Oklahoma and Texas during May and June 2015 resulted in anomalously high soil moisture and latent heat fluxes over the region, acting to increase the available boundary layer moisture. Tropical Storm Bill progressed inland over the region of anomalous soil moisture and latent heat fluxes, which helped maintain polarimetric radar signatures associated with tropical, warm rain events. Vertical profiles of polarimetric radar variables such as Z H , Z DR, K DP, and ρ hv were analyzed in time and space over Texas and Oklahoma. The profiles suggest that Tropical Storm Bill maintained warm rain signatures and collision–coalescence processes as it tracked hundreds of kilometers inland away from the landfall point consistent with tropical cyclone precipitation characteristics. Dual-frequency precipitation radar observations from the NASA GPM DPR were also analyzed post-landfall and showed similar signatures of collision–coalescence while Bill moved over north Texas, southern Oklahoma, eastern Missouri, and western Kentucky.
Abstract
Tropical Storm Bill produced over 400 mm of rainfall in portions of southern Oklahoma from 16 to 20 June 2015, adding to the catastrophic urban and river flooding that occurred throughout the region in the month prior to landfall. The unprecedented excessive precipitation event that occurred across Oklahoma and Texas during May and June 2015 resulted in anomalously high soil moisture and latent heat fluxes over the region, acting to increase the available boundary layer moisture. Tropical Storm Bill progressed inland over the region of anomalous soil moisture and latent heat fluxes, which helped maintain polarimetric radar signatures associated with tropical, warm rain events. Vertical profiles of polarimetric radar variables such as Z H , Z DR, K DP, and ρ hv were analyzed in time and space over Texas and Oklahoma. The profiles suggest that Tropical Storm Bill maintained warm rain signatures and collision–coalescence processes as it tracked hundreds of kilometers inland away from the landfall point consistent with tropical cyclone precipitation characteristics. Dual-frequency precipitation radar observations from the NASA GPM DPR were also analyzed post-landfall and showed similar signatures of collision–coalescence while Bill moved over north Texas, southern Oklahoma, eastern Missouri, and western Kentucky.