Search Results

You are looking at 11 - 18 of 18 items for :

  • Author or Editor: Joseph A. Santanello Jr. x
  • Journal of Hydrometeorology x
  • Refine by Access: All Content x
Clear All Modify Search
Joseph A. Santanello Jr.
,
Christa D. Peters-Lidard
,
Sujay V. Kumar
,
Charles Alonge
, and
Wei-Kuo Tao

Abstract

Land–atmosphere interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture states. The degree of coupling between the land surface and PBL in numerical weather prediction and climate models remains largely unexplored and undiagnosed because of the complex interactions and feedbacks present across a range of scales. Furthermore, uncoupled systems or experiments [e.g., the Project for the Intercomparison of Land-Surface Parameterization Schemes (PILPS)] may lead to inaccurate water and energy cycle process understanding by neglecting feedback processes such as PBL-top entrainment. In this study, a framework for diagnosing local land–atmosphere coupling is presented using a coupled mesoscale model with a suite of PBL and land surface model (LSM) options along with observations during field experiments in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting Model (WRF) has been coupled to the Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. Within this framework, the coupling established by each pairing of the available PBL schemes in WRF with the LSMs in LIS is evaluated in terms of the diurnal temperature and humidity evolution in the mixed layer. The coevolution of these variables and the convective PBL are sensitive to and, in fact, integrative of the dominant processes that govern the PBL budget, which are synthesized through the use of mixing diagrams. Results show how the sensitivity of land–atmosphere interactions to the specific choice of PBL scheme and LSM varies across surface moisture regimes and can be quantified and evaluated against observations. As such, this methodology provides a potential pathway to study factors controlling local land–atmosphere coupling (LoCo) using the LIS–WRF system, which will serve as a test bed for future experiments to evaluate coupling diagnostics within the community.

Full access
Joseph A. Santanello Jr.
,
Sujay V. Kumar
,
Christa D. Peters-Lidard
,
Ken Harrison
, and
Shujia Zhou

Abstract

Land–atmosphere (LA) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. In this study, the authors examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled Weather Research and Forecasting Model (WRF) forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through calibration of the Noah land surface model using the new optimization and uncertainty estimation subsystems in NASA's Land Information System (LIS-OPT/LIS-UE). The impact of the calibration on the 1) spinup of the land surface used as initial conditions and 2) the simulated heat and moisture states and fluxes of the coupled WRF simulations is then assessed. In addition, the sensitivity of this approach to the period of calibration (dry, wet, or average) is investigated. Results show that the offline calibration is successful in providing improved initial conditions and land surface physics for the coupled simulations and in turn leads to systematic improvements in land–PBL fluxes and near-surface temperature and humidity forecasts. Impacts are larger during dry regimes, but calibration during either primarily wet or dry periods leads to improvements in coupled simulations due to the reduction in land surface model bias. Overall, these results provide guidance on the questions of what, how, and when to calibrate land surface models for coupled model prediction.

Full access
Patricia M. Lawston
,
Joseph A. Santanello Jr.
,
Benjamin F. Zaitchik
, and
Matthew Rodell

Abstract

In the United States, irrigation represents the largest consumptive use of freshwater and accounts for approximately one-third of total water usage. Irrigation impacts soil moisture and can ultimately influence clouds and precipitation through land–planetary boundary layer (PBL) coupling processes. This study utilizes NASA’s Land Information System (LIS) and the NASA Unified Weather Research and Forecasting Model (NU-WRF) framework to investigate the effects of drip, flood, and sprinkler irrigation methods on land–atmosphere interactions, including land–PBL coupling and feedbacks at the local scale. To initialize 2-day, 1-km WRF forecasts over the central Great Plains in a drier-than-normal (2006) and a wetter-than-normal year (2008), 5-yr irrigated LIS spinups were used. The offline and coupled simulation results show that regional irrigation impacts are sensitive to time, space, and method and that irrigation cools and moistens the surface over and downwind of irrigated areas, ultimately resulting in both positive and negative feedbacks on the PBL depending on the time of day and background climate conditions. Furthermore, the results portray the importance of both irrigation method physics and correct representation of several key components of land surface models, including accurate and timely land-cover and crop-type classification, phenology (greenness), and soil moisture anomalies (through a land surface model spinup) in coupled prediction models.

Full access
Joseph A. Santanello Jr.
,
Sujay V. Kumar
,
Christa D. Peters-Lidard
, and
Patricia M. Lawston

Abstract

Advances in satellite monitoring of the terrestrial water cycle have led to a concerted effort to assimilate soil moisture observations from various platforms into offline land surface models (LSMs). One principal but still open question is that of the ability of land data assimilation (LDA) to improve LSM initial conditions for coupled short-term weather prediction. In this study, the impact of assimilating Advanced Microwave Scanning Radiometer for EOS (AMSR-E) soil moisture retrievals on coupled WRF Model forecasts is examined during the summers of dry (2006) and wet (2007) surface conditions in the southern Great Plains. LDA is carried out using NASA’s Land Information System (LIS) and the Noah LSM through an ensemble Kalman filter (EnKF) approach. The impacts of LDA on the 1) soil moisture and soil temperature initial conditions for WRF, 2) land–atmosphere coupling characteristics, and 3) ambient weather of the coupled LIS–WRF simulations are then assessed. Results show that impacts of soil moisture LDA during the spinup can significantly modify LSM states and fluxes, depending on regime and season. Results also indicate that the use of seasonal cumulative distribution functions (CDFs) is more advantageous compared to the traditional annual CDF bias correction strategies. LDA performs consistently regardless of atmospheric forcing applied, with greater improvements seen when using coarser, global forcing products. Downstream impacts on coupled simulations vary according to the strength of the LDA impact at the initialization, where significant modifications to the soil moisture flux–PBL–ambient weather process chain are observed. Overall, this study demonstrates potential for future, higher-resolution soil moisture assimilation applications in weather and climate research.

Full access
Ryann A. Wakefield
,
Jeffrey B. Basara
,
J. Marshall Shepherd
,
Noah Brauer
,
Jason C. Furtado
,
Joseph A. Santanello Jr.
, and
Roger Edwards

Abstract

Landfalling tropical cyclones (TCs) often decay rapidly due to a decrease in moisture and energy fluxes over land when compared to the ocean surface. Occasionally, however, these cyclones maintain intensity or reintensify over land. Post-landfall maintenance and intensification of TCs over land may be a result of fluxes of moisture and energy derived from anomalously wet soils. These soils act similarly to a warm sea surface, in a phenomenon coined the “brown ocean effect.” Tropical Storm (TS) Bill (2015) made landfall over a region previously moistened by anomalously heavy rainfall and displayed periods of reintensification and maintenance over land. This study evaluates the role of the brown ocean effect on the observed maintenance and intensification of TS Bill using a combination of existing and novel approaches, including the evaluation of precursor conditions at varying temporal scales and making use of composite backward trajectories. Comparisons were made to landfalling TCs with similar paths that did not undergo TC maintenance and/or intensification (TCMI) as well as to TS Erin (2007), a known TCMI case. We show that the antecedent environment prior to TS Bill was similar to other known TCMI cases, but drastically different from the non-TCMI cases analyzed in this study. Furthermore, we show that contributions of evapotranspiration to the overall water vapor budget were nonnegligible prior to TCMI cases and that evapotranspiration along storm inflow was significantly (p < 0.05) greater for TCMI cases than non-TCMI cases suggesting a potential upstream contribution from the land surface.

Full access
Noah S. Brauer
,
Jeffrey B. Basara
,
Pierre E. Kirstetter
,
Ryann A. Wakefield
,
Cameron R. Homeyer
,
Jinwoong Yoo
,
Marshall Shepherd
, and
Joseph. A. Santanello Jr.

Abstract

Tropical Storm Bill produced over 400 mm of rainfall in portions of southern Oklahoma from 16 to 20 June 2015, adding to the catastrophic urban and river flooding that occurred throughout the region in the month prior to landfall. The unprecedented excessive precipitation event that occurred across Oklahoma and Texas during May and June 2015 resulted in anomalously high soil moisture and latent heat fluxes over the region, acting to increase the available boundary layer moisture. Tropical Storm Bill progressed inland over the region of anomalous soil moisture and latent heat fluxes, which helped maintain polarimetric radar signatures associated with tropical, warm rain events. Vertical profiles of polarimetric radar variables such as Z H , Z DR, K DP, and ρ hv were analyzed in time and space over Texas and Oklahoma. The profiles suggest that Tropical Storm Bill maintained warm rain signatures and collision–coalescence processes as it tracked hundreds of kilometers inland away from the landfall point consistent with tropical cyclone precipitation characteristics. Dual-frequency precipitation radar observations from the NASA GPM DPR were also analyzed post-landfall and showed similar signatures of collision–coalescence while Bill moved over north Texas, southern Oklahoma, eastern Missouri, and western Kentucky.

Full access
Paul A. Dirmeyer
,
Jiexia Wu
,
Holly E. Norton
,
Wouter A. Dorigo
,
Steven M. Quiring
,
Trenton W. Ford
,
Joseph A. Santanello Jr.
,
Michael G. Bosilovich
,
Michael B. Ek
,
Randal D. Koster
,
Gianpaolo Balsamo
, and
David M. Lawrence

Abstract

Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those it is found that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely because of differences in instrumentation, calibration, and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat-dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory), and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but they poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration, or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.

Full access
Peter J. Shellito
,
Sujay V. Kumar
,
Joseph A. Santanello Jr.
,
Patricia Lawston-Parker
,
John D. Bolten
,
Michael H. Cosh
,
David D. Bosch
,
Chandra D. Holifield Collins
,
Stan Livingston
,
John Prueger
,
Mark Seyfried
, and
Patrick J. Starks

Abstract

The utility of hydrologic land surface models (LSMs) can be enhanced by using information from observational platforms, but mismatches between the two are common. This study assesses the degree to which model agreement with observations is affected by two mechanisms in particular: 1) physical incongruities between the support volumes being characterized and 2) inadequate or inconsistent parameterizations of physical processes. The Noah and Noah-MP LSMs by default characterize surface soil moisture (SSM) in the top 10 cm of the soil column. This depth is notably different from the 5-cm (or less) sensing depth of L-band radiometers such as NASA’s Soil Moisture Active Passive (SMAP) satellite mission. These depth inconsistencies are examined by using thinner model layers in the Noah and Noah-MP LSMs and comparing resultant simulations to in situ and SMAP soil moisture. In addition, a forward radiative transfer model (RTM) is used to facilitate direct comparisons of LSM-based and SMAP-based L-band Tb retrievals. Agreement between models and observations is quantified using Kolmogorov–Smirnov distance values, calculated from empirical cumulative distribution functions of SSM and Tb time series. Results show that agreement of SSM and Tb with observations depends primarily on systematic biases, and the sign of those biases depends on the particular subspace being analyzed (SSM or Tb). This study concludes that the role of increased soil layer discretization on simulated soil moisture and Tb is secondary to the influence of component parameterizations, the effects of which dominate systematic differences with observations.

Free access