Search Results
You are looking at 11 - 20 of 33 items for
- Author or Editor: Julie M. Arblaster x
- Refine by Access: All Content x
Abstract
The 11-yr solar cycle [decadal solar oscillation (DSO)] at its peaks strengthens the climatological precipitation maxima in the tropical Pacific during northern winter. Results from two global coupled climate model ensemble simulations of twentieth-century climate that include anthropogenic (greenhouse gases, ozone, and sulfate aerosols, as well as black carbon aerosols in one of the models) and natural (volcano and solar) forcings agree with observations in the Pacific region, though the amplitude of the response in the models is about half the magnitude of the observations. These models have poorly resolved stratospheres and no 11-yr ozone variations, so the mechanism depends almost entirely on the increased solar forcing at peaks in the DSO acting on the ocean surface in clear sky areas of the equatorial and subtropical Pacific. Mainly due to geometrical considerations and cloud feedbacks, this solar forcing can be nearly an order of magnitude greater in those regions than the globally averaged solar forcing. The mechanism involves the increased solar forcing at the surface being manifested by increased latent heat flux and evaporation. The resulting moisture is carried to the convergence zones by the trade winds, thereby strengthening the intertropical convergence zone (ITCZ) and the South Pacific convergence zone (SPCZ). Once these precipitation regimes begin to intensify, an amplifying set of coupled feedbacks similar to that in cold events (or La Niña events) occurs. There is a strengthening of the trades and greater upwelling of colder water that extends the equatorial cold tongue farther west and reduces precipitation across the equatorial Pacific, while increasing precipitation even more in the ITCZ and SPCZ. Experiments with the atmosphere component from one of the coupled models are performed in which heating anomalies similar to those observed during DSO peaks are specified in the tropical Pacific. The result is an anomalous Rossby wave response in the atmosphere and consequent positive sea level pressure (SLP) anomalies in the North Pacific extending to western North America. These patterns match features that occur during DSO peak years in observations and the coupled models.
Abstract
The 11-yr solar cycle [decadal solar oscillation (DSO)] at its peaks strengthens the climatological precipitation maxima in the tropical Pacific during northern winter. Results from two global coupled climate model ensemble simulations of twentieth-century climate that include anthropogenic (greenhouse gases, ozone, and sulfate aerosols, as well as black carbon aerosols in one of the models) and natural (volcano and solar) forcings agree with observations in the Pacific region, though the amplitude of the response in the models is about half the magnitude of the observations. These models have poorly resolved stratospheres and no 11-yr ozone variations, so the mechanism depends almost entirely on the increased solar forcing at peaks in the DSO acting on the ocean surface in clear sky areas of the equatorial and subtropical Pacific. Mainly due to geometrical considerations and cloud feedbacks, this solar forcing can be nearly an order of magnitude greater in those regions than the globally averaged solar forcing. The mechanism involves the increased solar forcing at the surface being manifested by increased latent heat flux and evaporation. The resulting moisture is carried to the convergence zones by the trade winds, thereby strengthening the intertropical convergence zone (ITCZ) and the South Pacific convergence zone (SPCZ). Once these precipitation regimes begin to intensify, an amplifying set of coupled feedbacks similar to that in cold events (or La Niña events) occurs. There is a strengthening of the trades and greater upwelling of colder water that extends the equatorial cold tongue farther west and reduces precipitation across the equatorial Pacific, while increasing precipitation even more in the ITCZ and SPCZ. Experiments with the atmosphere component from one of the coupled models are performed in which heating anomalies similar to those observed during DSO peaks are specified in the tropical Pacific. The result is an anomalous Rossby wave response in the atmosphere and consequent positive sea level pressure (SLP) anomalies in the North Pacific extending to western North America. These patterns match features that occur during DSO peak years in observations and the coupled models.
Abstract
A six-member ensemble of twentieth-century simulations with changes to only time-evolving global distributions of black carbon aerosols in a global coupled climate model is analyzed to study the effects of black carbon (BC) aerosols on the Indian monsoon. The BC aerosols act to increase lower-tropospheric heating over South Asia and reduce the amount of solar radiation reaching the surface during the dry season, as noted in previous studies. The increased meridional tropospheric temperature gradient in the premonsoon months of March–April–May (MAM), particularly between the elevated heat source of the Tibetan Plateau and areas to the south, contributes to enhanced precipitation over India in those months. With the onset of the monsoon, the reduced surface temperatures in the Bay of Bengal, Arabian Sea, and over India that extend to the Himalayas act to reduce monsoon rainfall over India itself, with some small increases over the Tibetan Plateau. Precipitation over China generally decreases due to the BC aerosol effects. There is a weakened latitudinal SST gradient resulting from BC aerosols in the model simulations as seen in the observations, and this is present in the multiple-forcings experiments with the Community Climate System Model, version 3 (CCSM3), which includes natural and anthropogenic forcings (including BC aerosols). The BC aerosols and consequent weakened latitudinal SST gradient in those experiments are associated with increased precipitation during MAM in northern India and over the Tibetan Plateau, with some decreased precipitation over southwest India, the Bay of Bengal, Burma, Thailand, and Malaysia, as seen in observations. During the summer monsoon season, the model experiments show that BC aerosols have likely contributed to observed decreasing precipitation trends over parts of India, Bangladesh, Burma, and Thailand. Analysis of single ensemble members from the multiple-forcings experiment suggests that the observed increasing precipitation trends over southern China appear to be associated with natural variability connected to surface temperature changes in the northwest Pacific.
Abstract
A six-member ensemble of twentieth-century simulations with changes to only time-evolving global distributions of black carbon aerosols in a global coupled climate model is analyzed to study the effects of black carbon (BC) aerosols on the Indian monsoon. The BC aerosols act to increase lower-tropospheric heating over South Asia and reduce the amount of solar radiation reaching the surface during the dry season, as noted in previous studies. The increased meridional tropospheric temperature gradient in the premonsoon months of March–April–May (MAM), particularly between the elevated heat source of the Tibetan Plateau and areas to the south, contributes to enhanced precipitation over India in those months. With the onset of the monsoon, the reduced surface temperatures in the Bay of Bengal, Arabian Sea, and over India that extend to the Himalayas act to reduce monsoon rainfall over India itself, with some small increases over the Tibetan Plateau. Precipitation over China generally decreases due to the BC aerosol effects. There is a weakened latitudinal SST gradient resulting from BC aerosols in the model simulations as seen in the observations, and this is present in the multiple-forcings experiments with the Community Climate System Model, version 3 (CCSM3), which includes natural and anthropogenic forcings (including BC aerosols). The BC aerosols and consequent weakened latitudinal SST gradient in those experiments are associated with increased precipitation during MAM in northern India and over the Tibetan Plateau, with some decreased precipitation over southwest India, the Bay of Bengal, Burma, Thailand, and Malaysia, as seen in observations. During the summer monsoon season, the model experiments show that BC aerosols have likely contributed to observed decreasing precipitation trends over parts of India, Bangladesh, Burma, and Thailand. Analysis of single ensemble members from the multiple-forcings experiment suggests that the observed increasing precipitation trends over southern China appear to be associated with natural variability connected to surface temperature changes in the northwest Pacific.
Natural variability of the climate system imposes a large uncertainty on future climate change signals simulated by a single integration of any coupled ocean–atmosphere model. This is especially true for regional precipitation changes. Here, these uncertainties are reduced by using results from two ensembles of five integrations of a coupled ocean–atmosphere model forced by projected future greenhouse gas and sulfate aerosol changes. Under a business-as-usual scenario, the simulations show a global warming of ~1.9°C over the twenty-first century (continuing the trend observed since the late 1970s), accompanied by a ~3% increase in global precipitation. Stabilizing the CO2 level at 550 ppm reduces the warming only moderately (by ~0.4°C in 2100). The patterns of seasonal-mean temperature and precipitation change in the two cases are highly correlated (r ≈ 0.99 for temperature and r ≈ 0.93 for precipitation). Over the midlatitude North Atlantic Ocean, the model produces a moderate surface cooling (1°–2°C, mostly in winter) over the twenty-first century. This cooling is accompanied by changes in atmospheric lapse rates over the region (i.e., larger warming in the free troposphere than at the surface), which stabilizes the surface ocean. The resultant reduction in local oceanic convection contributes to a 20% slowdown in the thermohaline circulation.
Natural variability of the climate system imposes a large uncertainty on future climate change signals simulated by a single integration of any coupled ocean–atmosphere model. This is especially true for regional precipitation changes. Here, these uncertainties are reduced by using results from two ensembles of five integrations of a coupled ocean–atmosphere model forced by projected future greenhouse gas and sulfate aerosol changes. Under a business-as-usual scenario, the simulations show a global warming of ~1.9°C over the twenty-first century (continuing the trend observed since the late 1970s), accompanied by a ~3% increase in global precipitation. Stabilizing the CO2 level at 550 ppm reduces the warming only moderately (by ~0.4°C in 2100). The patterns of seasonal-mean temperature and precipitation change in the two cases are highly correlated (r ≈ 0.99 for temperature and r ≈ 0.93 for precipitation). Over the midlatitude North Atlantic Ocean, the model produces a moderate surface cooling (1°–2°C, mostly in winter) over the twenty-first century. This cooling is accompanied by changes in atmospheric lapse rates over the region (i.e., larger warming in the free troposphere than at the surface), which stabilizes the surface ocean. The resultant reduction in local oceanic convection contributes to a 20% slowdown in the thermohaline circulation.
Abstract
Ensemble experiments with a global coupled climate model are performed for the twentieth century with time-evolving solar, greenhouse gas, sulfate aerosol (direct effect), and ozone (tropospheric and stratospheric) forcing. Observed global warming in the twentieth century occurred in two periods, one in the early twentieth century from about the early 1900s to the 1940s, and one later in the century from, roughly, the late 1960s to the end of the century. The model's response requires the combination of solar and anthropogenic forcing to approximate the early twentieth-century warming, while the radiative forcing from increasing greenhouse gases is dominant for the response in the late twentieth century, confirming previous studies. Of particular interest here is the model's amplification of solar forcing when this acts in combination with anthropogenic forcing. This difference is traced to the fact that solar forcing is more spatially heterogeneous (i.e., acting most strongly in areas where sunlight reaches the surface) while greenhouse gas forcing is more spatially uniform. Consequently, solar forcing is subject to coupled regional feedbacks involving the combination of temperature gradients, circulation regimes, and clouds. The magnitude of these feedbacks depends on the climate's base state. Over relatively cloud-free oceanic regions in the subtropics, the enhanced solar forcing produces greater evaporation. More moisture then converges into the precipitation convergence zones, intensifying the regional monsoon and Hadley and Walker circulations, causing cloud reductions over the subtropical ocean regions, and, hence, more solar input. An additional response to solar forcing in northern summer is an enhancement of the meridional temperature gradients due to greater solar forcing over land regions that contribute to stronger West African and South Asian monsoons. Since the greenhouse gases are more spatially uniform, such regional circulation feedbacks are not as strong. These regional responses are most evident when the solar forcing occurs in concert with increased greenhouse gas forcing. The net effect of enhanced solar forcing in the early twentieth century is to produce larger solar-induced increases of tropical precipitation when calculated as a residual than for early century solar-only forcing, even though the size of the imposed solar forcing is the same. As a consequence, overall precipitation increases in the early twentieth century in the Asian monsoon regions are greater than late century increases, qualitatively consistent with observed trends in all-India rainfall. Similar effects occur in West Africa, the tropical Pacific, and the Southern Ocean tropical convergence zones.
Abstract
Ensemble experiments with a global coupled climate model are performed for the twentieth century with time-evolving solar, greenhouse gas, sulfate aerosol (direct effect), and ozone (tropospheric and stratospheric) forcing. Observed global warming in the twentieth century occurred in two periods, one in the early twentieth century from about the early 1900s to the 1940s, and one later in the century from, roughly, the late 1960s to the end of the century. The model's response requires the combination of solar and anthropogenic forcing to approximate the early twentieth-century warming, while the radiative forcing from increasing greenhouse gases is dominant for the response in the late twentieth century, confirming previous studies. Of particular interest here is the model's amplification of solar forcing when this acts in combination with anthropogenic forcing. This difference is traced to the fact that solar forcing is more spatially heterogeneous (i.e., acting most strongly in areas where sunlight reaches the surface) while greenhouse gas forcing is more spatially uniform. Consequently, solar forcing is subject to coupled regional feedbacks involving the combination of temperature gradients, circulation regimes, and clouds. The magnitude of these feedbacks depends on the climate's base state. Over relatively cloud-free oceanic regions in the subtropics, the enhanced solar forcing produces greater evaporation. More moisture then converges into the precipitation convergence zones, intensifying the regional monsoon and Hadley and Walker circulations, causing cloud reductions over the subtropical ocean regions, and, hence, more solar input. An additional response to solar forcing in northern summer is an enhancement of the meridional temperature gradients due to greater solar forcing over land regions that contribute to stronger West African and South Asian monsoons. Since the greenhouse gases are more spatially uniform, such regional circulation feedbacks are not as strong. These regional responses are most evident when the solar forcing occurs in concert with increased greenhouse gas forcing. The net effect of enhanced solar forcing in the early twentieth century is to produce larger solar-induced increases of tropical precipitation when calculated as a residual than for early century solar-only forcing, even though the size of the imposed solar forcing is the same. As a consequence, overall precipitation increases in the early twentieth century in the Asian monsoon regions are greater than late century increases, qualitatively consistent with observed trends in all-India rainfall. Similar effects occur in West Africa, the tropical Pacific, and the Southern Ocean tropical convergence zones.
Abstract
Four global coupled climate models with different combinations of atmosphere, ocean, land surface, and sea ice components are compared in idealized forcing (1% CO2 increase) experiments. The four models are the Climate System Model (CSM), the Parallel Climate Model (PCM), the PCM/CSM Transition Model (PCTM), and the Community Climate System Model (CCSM). The hypothesis is posed that models with similar atmospheric model components should show a similar globally averaged dynamically coupled response to increasing CO2 in spite of different ocean, sea ice, and land formulations. Conversely, models with different atmospheric components should be most different in terms of the coupled globally averaged response. The two models with the same atmosphere and sea ice but different ocean components (PCM and PCTM) have the most similar response to increasing CO2, followed closely by CSM with comparable atmosphere and different ocean and sea ice from either PCM or PCTM. The fourth model, CCSM, has a different response from the other three and, in particular, is different from PCTM in spite of having the same ocean and sea ice but different atmospheric model component. These results support the hypothesis that, to a greater degree than the other components, the atmospheric model “manages” the relevant global feedbacks including sea ice albedo, water vapor, and clouds. The atmospheric model also affects the meridional overturning circulation in the ocean, as well as the ocean heat uptake characteristics. This is due to changes in surface fluxes of heat and freshwater that affect surface density in the ocean. For global sensitivity measures, the ocean, sea ice, and land surface play secondary roles, even though differences in these components can be important for regional climate changes.
Abstract
Four global coupled climate models with different combinations of atmosphere, ocean, land surface, and sea ice components are compared in idealized forcing (1% CO2 increase) experiments. The four models are the Climate System Model (CSM), the Parallel Climate Model (PCM), the PCM/CSM Transition Model (PCTM), and the Community Climate System Model (CCSM). The hypothesis is posed that models with similar atmospheric model components should show a similar globally averaged dynamically coupled response to increasing CO2 in spite of different ocean, sea ice, and land formulations. Conversely, models with different atmospheric components should be most different in terms of the coupled globally averaged response. The two models with the same atmosphere and sea ice but different ocean components (PCM and PCTM) have the most similar response to increasing CO2, followed closely by CSM with comparable atmosphere and different ocean and sea ice from either PCM or PCTM. The fourth model, CCSM, has a different response from the other three and, in particular, is different from PCTM in spite of having the same ocean and sea ice but different atmospheric model component. These results support the hypothesis that, to a greater degree than the other components, the atmospheric model “manages” the relevant global feedbacks including sea ice albedo, water vapor, and clouds. The atmospheric model also affects the meridional overturning circulation in the ocean, as well as the ocean heat uptake characteristics. This is due to changes in surface fluxes of heat and freshwater that affect surface density in the ocean. For global sensitivity measures, the ocean, sea ice, and land surface play secondary roles, even though differences in these components can be important for regional climate changes.
Abstract
When record-breaking climate and weather extremes occur, decision-makers and planners want to know whether they are random natural events with historical levels of reoccurrence or are reflective of an altered frequency or intensity as a result of climate change. This paper describes a method to attribute extreme weather and climate events to observed increases in atmospheric CO2 using an initialized subseasonal to seasonal coupled global climate prediction system. Application of this method provides quantitative estimates of the contribution arising from increases in the level of atmospheric CO2 to individual weather and climate extreme events. Using a coupled subseasonal to seasonal forecast system differs from other methods because it has the merit of being initialized with the observed conditions and subsequently reproducing the observed events and their mechanisms. This can aid understanding when the reforecasts with and without enhanced CO2 are compared and communicated to a general audience. Atmosphere–ocean interactions are accounted for. To illustrate the method, we attribute the record Australian heat event of October 2015. We find that about half of the October 2015 Australia-wide temperature anomaly is due to the increase in atmospheric CO2 since 1960. This method has the potential to provide attribution statements for forecast events within an outlook period (i.e., before they occur). This will allow for informed messaging to be available as required when an extreme event occurs, which is of particular use to weather and climate services.
Abstract
When record-breaking climate and weather extremes occur, decision-makers and planners want to know whether they are random natural events with historical levels of reoccurrence or are reflective of an altered frequency or intensity as a result of climate change. This paper describes a method to attribute extreme weather and climate events to observed increases in atmospheric CO2 using an initialized subseasonal to seasonal coupled global climate prediction system. Application of this method provides quantitative estimates of the contribution arising from increases in the level of atmospheric CO2 to individual weather and climate extreme events. Using a coupled subseasonal to seasonal forecast system differs from other methods because it has the merit of being initialized with the observed conditions and subsequently reproducing the observed events and their mechanisms. This can aid understanding when the reforecasts with and without enhanced CO2 are compared and communicated to a general audience. Atmosphere–ocean interactions are accounted for. To illustrate the method, we attribute the record Australian heat event of October 2015. We find that about half of the October 2015 Australia-wide temperature anomaly is due to the increase in atmospheric CO2 since 1960. This method has the potential to provide attribution statements for forecast events within an outlook period (i.e., before they occur). This will allow for informed messaging to be available as required when an extreme event occurs, which is of particular use to weather and climate services.
Abstract
The interaction of the Indian Ocean dynamics and the tropospheric biennial oscillation (TBO) is analyzed in the 300-yr control run of the National Center for Atmospheric Research (NCAR) Climate System Model (CSM). Sea surface temperature (SST) anomalies and equatorial ocean dynamics in the Indian Ocean are associated with the TBO and interannual variability of Asian–Australian monsoons in observations. The air–sea interactions involved in these processes in the coupled ocean–atmosphere model are analyzed, so as to diagnose the causes of the SST anomalies and their role in the development of a biennial cycle in the Indian–Pacific Ocean region.
By using singular value decomposition (SVD) analysis, it is found that the model reproduces the dominant mechanisms that are involved in the development of the TBO's influence on the south Asian monsoon: large-scale forcing from the tropical Pacific and regional forcing associated with both the meridional temperature gradient between the Asian continent and the Indian Ocean, as well as Indian Ocean SST anomalies. Using cumulative anomaly pattern correlation, the strength of each of these processes in affecting the interannual variability of both Asian and Australian monsoon rainfall is assessed.
In analyzing the role of the Indian Ocean dynamics in the TBO, it is found that the Indian Ocean zonal mode (IOZM) is an inherent feature of the Asian summer monsoon and the TBO. The IOZM is thus a part of the biennial nature of the Indian–Pacific Ocean region. The coupled ocean–atmosphere dynamics and cross-equatorial heat transport contribute to the interannual variability and biennial nature of the ENSO–monsoon system, by affecting the heat content of the Indian Ocean and resulting SST anomalies over multiple seasons, which is a key factor in the TBO.
Abstract
The interaction of the Indian Ocean dynamics and the tropospheric biennial oscillation (TBO) is analyzed in the 300-yr control run of the National Center for Atmospheric Research (NCAR) Climate System Model (CSM). Sea surface temperature (SST) anomalies and equatorial ocean dynamics in the Indian Ocean are associated with the TBO and interannual variability of Asian–Australian monsoons in observations. The air–sea interactions involved in these processes in the coupled ocean–atmosphere model are analyzed, so as to diagnose the causes of the SST anomalies and their role in the development of a biennial cycle in the Indian–Pacific Ocean region.
By using singular value decomposition (SVD) analysis, it is found that the model reproduces the dominant mechanisms that are involved in the development of the TBO's influence on the south Asian monsoon: large-scale forcing from the tropical Pacific and regional forcing associated with both the meridional temperature gradient between the Asian continent and the Indian Ocean, as well as Indian Ocean SST anomalies. Using cumulative anomaly pattern correlation, the strength of each of these processes in affecting the interannual variability of both Asian and Australian monsoon rainfall is assessed.
In analyzing the role of the Indian Ocean dynamics in the TBO, it is found that the Indian Ocean zonal mode (IOZM) is an inherent feature of the Asian summer monsoon and the TBO. The IOZM is thus a part of the biennial nature of the Indian–Pacific Ocean region. The coupled ocean–atmosphere dynamics and cross-equatorial heat transport contribute to the interannual variability and biennial nature of the ENSO–monsoon system, by affecting the heat content of the Indian Ocean and resulting SST anomalies over multiple seasons, which is a key factor in the TBO.
Abstract
Globally averaged surface air temperatures in some decades show rapid increases (accelerated warming decades), and in other decades there is no warming trend (hiatus decades). A previous study showed that the net energy imbalance at the top of the atmosphere of about 1 W m−2 is associated with greater increases of deep ocean heat content below 750 m during the hiatus decades, while there is little globally averaged surface temperature increase or warming in the upper ocean layers. Here the authors examine processes involved with accelerated warming decades and address the relative roles of external forcing from increasing greenhouse gases and internally generated decadal climate variability associated with interdecadal Pacific oscillation (IPO). Model results from the Community Climate System Model, version 4 (CCSM4), show that accelerated warming decades are characterized by rapid warming of globally averaged surface air temperature, greater increases of heat content in the upper ocean layers, and less heat content increase in the deep ocean, opposite to the hiatus decades. In addition to contributions from processes potentially linked to Antarctic Bottom Water (AABW) formation and the Atlantic meridional overturning circulation (AMOC), the positive phase of the IPO, adding to the response to external forcing, is usually associated with accelerated warming decades. Conversely, hiatus decades typically occur with the negative phase of the IPO, when warming from the external forcing is overwhelmed by internally generated cooling in the tropical Pacific. Internally generated hiatus periods of up to 15 years with zero global warming trend are present in the future climate simulations. This suggests that there is a chance that the current observed hiatus could extend for several more years.
Abstract
Globally averaged surface air temperatures in some decades show rapid increases (accelerated warming decades), and in other decades there is no warming trend (hiatus decades). A previous study showed that the net energy imbalance at the top of the atmosphere of about 1 W m−2 is associated with greater increases of deep ocean heat content below 750 m during the hiatus decades, while there is little globally averaged surface temperature increase or warming in the upper ocean layers. Here the authors examine processes involved with accelerated warming decades and address the relative roles of external forcing from increasing greenhouse gases and internally generated decadal climate variability associated with interdecadal Pacific oscillation (IPO). Model results from the Community Climate System Model, version 4 (CCSM4), show that accelerated warming decades are characterized by rapid warming of globally averaged surface air temperature, greater increases of heat content in the upper ocean layers, and less heat content increase in the deep ocean, opposite to the hiatus decades. In addition to contributions from processes potentially linked to Antarctic Bottom Water (AABW) formation and the Atlantic meridional overturning circulation (AMOC), the positive phase of the IPO, adding to the response to external forcing, is usually associated with accelerated warming decades. Conversely, hiatus decades typically occur with the negative phase of the IPO, when warming from the external forcing is overwhelmed by internally generated cooling in the tropical Pacific. Internally generated hiatus periods of up to 15 years with zero global warming trend are present in the future climate simulations. This suggests that there is a chance that the current observed hiatus could extend for several more years.