Search Results

You are looking at 11 - 20 of 25 items for

  • Author or Editor: Karen J. Heywood x
  • Refine by Access: All Content x
Clear All Modify Search
Michael P. Meredith, John M. Vassie, Robert Spencer, and Karen J. Heywood

Abstract

Bottom pressure recorders (BPRs) have been deployed at Drake Passage (DP) to monitor changes in the volume transport of the Antarctic Circumpolar Current (ACC) through the passage. The use of inverted echo sounders (IESs) in assisting the interpretation of the BPR data is presented. The initial data processing of the IES data is outlined, and the accuracy of the data described. The most significant limitation on the application of the data is the presence of a sea-state bias with a root-mean-square value of around 0.4 ms. IES data are shown to perform well at determining whether individual changes in bottom pressure are due to changes in cross-passage-averaged barotropic transport or due to the effect of meanders, eddies, and/or lateral shifts of ACC fronts.

The conversion of acoustic travel time to more useful oceanographic parameters (dynamic height, baroclinic pressure, inverse-barometer-corrected sea level) is described. A method for improving the performance of very deep bottom pressure in monitoring ACC barotropic transport changes is described for the case where the BPR–IES instrumentation is deployed near an ACC front. Reasons for the inability of this method to improve the ability of shallower pressure records in monitoring the ACC are discussed, and suggestions for future refinements are outlined.

Full access
Loic Jullion, Karen J. Heywood, Alberto C. Naveira Garabato, and David P. Stevens

Abstract

The confluence between the Brazil Current and the Malvinas Current [the Brazil–Malvinas Confluence (BMC)] in the Argentine Basin is characterized by a complicated thermohaline structure favoring the exchanges of mass, heat, and salt between the subtropical gyre and the Antarctic Circumpolar Current (ACC). Analysis of thermohaline properties of hydrographic sections in the BMC reveals strong interactions between the ACC and subtropical fronts. In the Subantarctic Front, Subantarctic Mode Water (SAMW), Antarctic Intermediate Water (AAIW), and Circumpolar Deep Water (CDW) warm (become saltier) by 0.4° (0.08), 0.3° (0.02), and 0.6°C (0.1), respectively. In the subtropical gyre, AAIW and North Atlantic Deep Water have cooled (freshened) by 0.4° (0.07) and 0.7°C (0.11), respectively.

To quantify those ACC–subtropical gyre interactions, a box inverse model surrounding the confluence is built. The model diagnoses a subduction of 16 ± 4 Sv (1 Sv ≡ 106 m3 s−1) of newly formed SAMW and AAIW under the subtropical gyre corresponding to about half of the total subduction rate of the South Atlantic found in previous studies. Cross-frontal heat (0.06 PW) and salt (2.4 × 1012 kg s−1) gains by the ACC in the BMC contribute to the meridional poleward heat and salt fluxes across the ACC. These estimates correspond to perhaps half of the total cross-ACC poleward heat flux. The authors’ results highlight the BMC as a key region in the subtropical–ACC exchanges.

Full access
Andrew F. Thompson, Karen J. Heywood, Sally E. Thorpe, Angelika H. H. Renner, and Armando Trasviña

Abstract

An array of 40 surface drifters, drogued at 15-m depth, was deployed in February 2007 to the east of the tip of the Antarctic Peninsula as part of the Antarctic Drifter Experiment: Links to Isobaths and Ecosystems (ADELIE) project. Data obtained from these drifters and from a select number of local historical drifters provide the most detailed observations to date of the surface circulation in the northwestern Weddell Sea. The Antarctic Slope Front (ASF), characterized by a ∼20 cm s−1 current following the 1000-m isobath, is the dominant feature east of the peninsula. The slope front bifurcates when it encounters the South Scotia Ridge with the drifters following one of three paths. Drifters (i) are carried westward into Bransfield Strait; (ii) follow the 1000-m isobath to the east along the southern edge of the South Scotia Ridge; or (iii) become entrained in a large-standing eddy over the South Scotia Ridge. Drifters are strongly steered by contours of f /h (Coriolis frequency/depth) as shown by calculations of the first two moments of displacement in both geographic coordinates and coordinates locally aligned with contours of f /h. An eddy-mean decomposition of the drifter velocities indicates that shear in the mean flow makes the dominant contribution to dispersion in the along-f /h direction, but eddy processes are more important in dispersing particles across contours of f /h. The results of the ADELIE study suggest that the circulation near the tip of the Antarctic Peninsula may influence ecosystem dynamics in the Southern Ocean through Antarctic krill transport and the export of nutrients.

Full access
Céline Heuzé, Karen J. Heywood, David P. Stevens, and Jeff K. Ridley

Abstract

Changes in bottom temperature, salinity, and density in the global ocean by 2100 for CMIP5 climate models are investigated for the climate change scenarios RCP4.5 and RCP8.5. The mean of 24 models shows a decrease in density in all deep basins, except the North Atlantic, which becomes denser. The individual model responses to climate change forcing are more complex: regarding temperature, the 24 models predict a warming of the bottom layer of the global ocean; in salinity, there is less agreement regarding the sign of the change, especially in the Southern Ocean. The magnitude and equatorward extent of these changes also vary strongly among models. The changes in properties can be linked with changes in the mean transport of key water masses. The Atlantic meridional overturning circulation weakens in most models and is directly linked to changes in bottom density in the North Atlantic. These changes are the result of the intrusion of modified Antarctic Bottom Water, made possible by the decrease in North Atlantic Deep Water formation. In the Indian, Pacific, and South Atlantic Oceans, changes in bottom density are congruent with the weakening in Antarctic Bottom Water transport through these basins. The authors argue that the greater the 1986–2005 meridional transports, the more changes have propagated equatorward by 2100. However, strong decreases in density over 100 yr of climate change cause a weakening of the transports. The speed at which these property changes reach the deep basins is critical for a correct assessment of the heat storage capacity of the oceans as well as for predictions of future sea level rise.

Full access
Michel Arhan, Alberto C. Naveira Garabato, Karen J. Heywood, and David P. Stevens

Abstract

Hydrographic and lowered acoustic Doppler current profiler data along a line from the Falkland Islands to South Georgia via the Maurice Ewing Bank are used to estimate the flow of circumpolar water into the Argentine Basin, and to study the interaction of the Antarctic Circumpolar Current with the Falkland Plateau.

The estimated net transport of 129 ± 21 Sv (Sv ≡ 106 m3 s−1) across the section is shared between three major current bands. One is associated with the Subantarctic Front (SAF; 52 ± 6 Sv), and the other two with branches of the Polar Front (PF) over the sill of the Falkland Plateau (44 ± 9 Sv) and in the northwestern Georgia Basin (45 ± 9 Sv). The latter includes a local reinforcement (∼20 Sv) by a deep anticyclonic recirculation around the Maurice Ewing Bank. While the classical hydrographic signature of the PF stands out in this eastbound branch, it is less distinguishable in the northbound branch over the plateau. Other circulation features are a southward entrainment of diluted North Atlantic Deep Water from the Argentine Basin over the eastern part of the Falkland Plateau, and an abyssal anticyclonic flow in the western Georgia Basin, opposite to what was generally assumed.

The different behavior of the SAF and PF at the Falkland Plateau (no structural modification of the former and partitioning of the latter) is attributed to the PF being deeper than the sill depth on the upstream side of the plateau, unlike the SAF. It is suggested that the partitioning takes place at a location where the 2500-m and 3000-m isobaths diverge at the southern edge of the plateau. The western branch of the PF crosses the plateau at a distance of ∼250 km to the east of the SAF. Comparison with a section across the Falkland Current farther downstream shows that its deep part subsequently joins the SAF on the northern side of the plateau where the 2000–3000 m isobaths converge in the steep Falkland Escarpment. The result of this two-stage bathymetric effect is a net transfer of at least 10 Sv from the PF to the SAF at the crossing of the Falkland Plateau.

Full access
Paul A. Dodd, Martin R. Price, Karen J. Heywood, and Miles Pebody

Abstract

A compact water sampler rated to full ocean depth has been deployed from an autonomous underwater vehicle (AUV) to enable oceanographic tracer measurements. Techniques developed to allow the instrument to collect up to 49 samples of sufficient purity for tracer measurement without the need for extensive flushing have increased its sampling frequency, allowing a 200-mL seawater sample to be collected in 10 min. This is achieved by flushing the instrument and sample containers before deployment with a fluid of known properties that can be detected after recovery using salinity analysis. A deployment in which water samples were collected for oxygen isotope ratio analysis is presented as an example. Factors limiting the reliability of the instrument when deployed from an AUV are identified and procedures are developed to address critical problems.

Full access
Gillian M. Damerell, Karen J. Heywood, David P. Stevens, and Alberto C. Naveira Garabato

Abstract

Diapycnal mixing rates in the oceans have been shown to have a great deal of spatial variability, but the temporal variability has been little studied. Here results are presented from a method developed to calculate diapycnal diffusivity from moored acoustic Doppler current profiler (ADCP) velocity shear profiles. An 18-month time series of diffusivity is presented from data taken by a LongRanger ADCP moored at 2400-m depth, 600 m above the seafloor, in Shag Rocks Passage, a deep passage in the North Scotia Ridge (Southern Ocean). The Polar Front is constrained to pass through this passage, and the strong currents and complex topography are expected to result in enhanced mixing. The spatial distribution of diffusivity in Shag Rocks Passage deduced from lowered ADCP shear is consistent with published values for similar regions, with diffusivity possibly as large as 90 × 10−4 m2 s−1 near the seafloor, decreasing to the expected background level of ~0.1 × 10−4 m2 s−1 in areas away from topography. The moored ADCP profiles spanned a depth range of 2400–1800 m; thus, the moored time series was obtained from a region of moderately enhanced diffusivity.

The diffusivity time series has a median of 3.3 × 10−4 m2 s−1 and a range from 0.5 × 10−4 to 57 × 10−4 m2 s−1. There is no significant signal at annual or semiannual periods, but there is evidence of signals at periods of approximately 14 days (likely due to the spring–neap tidal cycle) and at periods of 3.8 and 2.6 days most likely due to topographically trapped waves propagating around the local seamount. Using the observed stratification and an axisymmetric seamount, of similar dimensions to the one west of the mooring, in a model of baroclinic topographically trapped waves, produces periods of 3.8 and 2.6 days, in agreement with the signals observed. The diffusivity is anticorrelated with the rotary coefficient (indicating that stronger mixing occurs during times of upward energy propagation), which suggests that mixing occurs due to the breaking of internal waves generated at topography.

Full access
Alberto C. Naveira Garabato, Loïc Jullion, David P. Stevens, Karen J. Heywood, and Brian A. King

Abstract

A time series of the physical and biogeochemical properties of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) in the Drake Passage between 1969 and 2005 is constructed using 24 transects of measurements across the passage. Both water masses have experienced substantial variability on interannual to interdecadal time scales. SAMW is formed by winter overturning on the equatorward flank of the Antarctic Circumpolar Current (ACC) in and to the west of the Drake Passage. Its interannual variability is primarily driven by variations in wintertime air–sea turbulent heat fluxes and net evaporation modulated by the El Niño–Southern Oscillation (ENSO). Despite their spatial proximity, the AAIW in the Drake Passage has a very different source than that of the SAMW because it is ventilated by the northward subduction of Winter Water originating in the Bellingshausen Sea. Changes in AAIW are mainly forced by variability in Winter Water properties resulting from fluctuations in wintertime air–sea turbulent heat fluxes and spring sea ice melting, both of which are linked to predominantly ENSO-driven variations in the intensity of meridional winds to the west of the Antarctic Peninsula. A prominent exception to the prevalent modes of SAMW and AAIW formation occurred in 1998, when strong wind forcing associated with constructive interference between ENSO and the southern annular mode (SAM) triggered a transitory shift to an Ekman-dominated mode of SAMW ventilation and a 1–2-yr shutdown of AAIW production.

The interdecadal evolutions of SAMW and AAIW in the Drake Passage are distinct and driven by different processes. SAMW warmed (by ∼0.3°C) and salinified (by ∼0.04) during the 1970s and experienced the reverse trends between 1990 and 2005, when the coldest and freshest SAMW on record was observed. In contrast, AAIW underwent a net freshening (by ∼0.05) between the 1970s and the twenty-first century. Although the reversing changes in SAMW were chiefly forced by a ∼30-yr oscillation in regional air–sea turbulent heat fluxes and precipitation associated with the interdecadal Pacific oscillation, with a SAM-driven intensification of the Ekman supply of Antarctic surface waters from the south contributing significantly too, the freshening of AAIW was linked to the extreme climate change that occurred to the west of the Antarctic Peninsula in recent decades. There, a freshening of the Winter Water ventilating AAIW was brought about by increased precipitation and a retreat of the winter sea ice edge, which were seemingly forced by an interdecadal trend in the SAM and regional positive feedbacks in the air–sea ice coupled climate system. All in all, these findings highlight the role of the major modes of Southern Hemisphere climate variability in driving the evolution of SAMW and AAIW in the Drake Passage region and the wider South Atlantic and suggest that these modes may have contributed significantly to the hemispheric-scale changes undergone by those waters in recent decades.

Full access
Pierre Cauchy, Karen J. Heywood, Nathan D. Merchant, Bastien Y. Queste, and Pierre Testor

Abstract

Wind speed measurements are needed to understand ocean–atmosphere coupling processes and their effects on climate. Satellite observations provide sufficient spatial and temporal coverage but are lacking adequate calibration, while ship- and mooring-based observations are spatially limited and have technical shortcomings. However, wind-generated underwater noise can be used to measure wind speed, a method known as Weather Observations Through Ambient Noise (WOTAN). Here, we adapt the WOTAN technique for application to ocean gliders, enabling calibrated wind speed measurements to be combined with contemporaneous oceanographic profiles over extended spatial and temporal scales. We demonstrate the methodology in three glider surveys in the Mediterranean Sea during winter 2012/13. Wind speeds ranged from 2 to 21.5 m s−1, and the relationship to underwater ambient noise measured from the glider was quantified. A two-regime linear model is proposed, which validates a previous linear model for light winds (below 12 m s−1) and identifies a regime change in the noise generation mechanism at higher wind speeds. This proposed model improves on previous work by extending the validated model range to strong winds of up to 21.5 m s−1. The acquisition, data processing, and calibration steps are described. Future applications for glider-based wind speed observations and the development of a global wind speed estimation model are discussed.

Open access
Marina Frants, Gillian M. Damerell, Sarah T. Gille, Karen J. Heywood, Jennifer MacKinnon, and Janet Sprintall

Abstract

Finescale estimates of diapycnal diffusivity κ are computed from CTD and expendable CTD (XCTD) data sampled in Drake Passage and in the eastern Pacific sector of the Southern Ocean and are compared against microstructure measurements from the same times and locations. The microstructure data show vertical diffusivities that are one-third to one-fifth as large over the smooth abyssal plain in the southeastern Pacific as they are in Drake Passage, where diffusivities are thought to be enhanced by the flow of the Antarctic Circumpolar Current over rough topography. Finescale methods based on vertical strain estimates are successful at capturing the spatial variability between the low-mixing regime in the southeastern Pacific and the high-mixing regime of Drake Passage. Thorpe-scale estimates for the same dataset fail to capture the differences between Drake Passage and eastern Pacific estimates. XCTD profiles have lower vertical resolution and higher noise levels after filtering than CTD profiles, resulting in XCTD κ estimates that are, on average, an order of magnitude higher than CTD estimates. Overall, microstructure diffusivity estimates are better matched by strain-based estimates than by estimates based on Thorpe scales, and CTD data appear to perform better than XCTD data. However, even the CTD-based strain diffusivity estimates can differ from microstructure diffusivities by nearly an order of magnitude, suggesting that density-based fine-structure methods of estimating mixing from CTD or XCTD data have real limitations in low-stratification regimes such as the Southern Ocean.

Full access