Search Results

You are looking at 11 - 15 of 15 items for :

  • Author or Editor: Karen J. Heywood x
  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All Modify Search
Andrew F. Thompson, Karen J. Heywood, Sally E. Thorpe, Angelika H. H. Renner, and Armando Trasviña

Abstract

An array of 40 surface drifters, drogued at 15-m depth, was deployed in February 2007 to the east of the tip of the Antarctic Peninsula as part of the Antarctic Drifter Experiment: Links to Isobaths and Ecosystems (ADELIE) project. Data obtained from these drifters and from a select number of local historical drifters provide the most detailed observations to date of the surface circulation in the northwestern Weddell Sea. The Antarctic Slope Front (ASF), characterized by a ∼20 cm s−1 current following the 1000-m isobath, is the dominant feature east of the peninsula. The slope front bifurcates when it encounters the South Scotia Ridge with the drifters following one of three paths. Drifters (i) are carried westward into Bransfield Strait; (ii) follow the 1000-m isobath to the east along the southern edge of the South Scotia Ridge; or (iii) become entrained in a large-standing eddy over the South Scotia Ridge. Drifters are strongly steered by contours of f /h (Coriolis frequency/depth) as shown by calculations of the first two moments of displacement in both geographic coordinates and coordinates locally aligned with contours of f /h. An eddy-mean decomposition of the drifter velocities indicates that shear in the mean flow makes the dominant contribution to dispersion in the along-f /h direction, but eddy processes are more important in dispersing particles across contours of f /h. The results of the ADELIE study suggest that the circulation near the tip of the Antarctic Peninsula may influence ecosystem dynamics in the Southern Ocean through Antarctic krill transport and the export of nutrients.

Full access
Marina Azaneu, Karen J. Heywood, Bastien Y. Queste, and Andrew F. Thompson

Abstract

The dense water outflow from the Antarctic continental shelf is closely associated with the strength and position of the Antarctic Slope Front. This study explores the short-term and spatial variability of the Antarctic Slope Front system and the mechanisms that regulate cross-slope exchange using highly temporally and spatially resolved measurements from three ocean gliders deployed in 2012. The 22 sections along the eastern Antarctic Peninsula and west of the South Orkney Islands are grouped regionally and composited by isobaths. There is consistency in the front position around the Powell Basin, varying mostly between the 500- and 800-m isobaths. In most of the study area the flow is bottom intensified. The along-slope transport of the Antarctic Slope Current (upper 1000 m) varies between 0.2 and 5.9 Sv (1 Sv ≡ 106 m3 s−1) and does not exhibit a regional pattern. The magnitude of the velocity field shows substantial variability, up to twice its mean value. Higher eddy kinetic energy (0.003 m2 s−2) is observed in sections with dense water, possibly because of baroclinic instabilities in the bottom layer. Distributions of potential vorticity show an increase toward the shelf along isopycnals and also in the dense water layer. Glider sections located west of the South Orkney Islands indicate a northward direction of the flow associated with the Weddell Front, which differs from previous estimates of the mean circulation. This study provides some of the first observational confirmation of the high-frequency variability associated with an active eddy field that has been suggested by recent numerical simulations in this region.

Open access
Michel Arhan, Alberto C. Naveira Garabato, Karen J. Heywood, and David P. Stevens

Abstract

Hydrographic and lowered acoustic Doppler current profiler data along a line from the Falkland Islands to South Georgia via the Maurice Ewing Bank are used to estimate the flow of circumpolar water into the Argentine Basin, and to study the interaction of the Antarctic Circumpolar Current with the Falkland Plateau.

The estimated net transport of 129 ± 21 Sv (Sv ≡ 106 m3 s−1) across the section is shared between three major current bands. One is associated with the Subantarctic Front (SAF; 52 ± 6 Sv), and the other two with branches of the Polar Front (PF) over the sill of the Falkland Plateau (44 ± 9 Sv) and in the northwestern Georgia Basin (45 ± 9 Sv). The latter includes a local reinforcement (∼20 Sv) by a deep anticyclonic recirculation around the Maurice Ewing Bank. While the classical hydrographic signature of the PF stands out in this eastbound branch, it is less distinguishable in the northbound branch over the plateau. Other circulation features are a southward entrainment of diluted North Atlantic Deep Water from the Argentine Basin over the eastern part of the Falkland Plateau, and an abyssal anticyclonic flow in the western Georgia Basin, opposite to what was generally assumed.

The different behavior of the SAF and PF at the Falkland Plateau (no structural modification of the former and partitioning of the latter) is attributed to the PF being deeper than the sill depth on the upstream side of the plateau, unlike the SAF. It is suggested that the partitioning takes place at a location where the 2500-m and 3000-m isobaths diverge at the southern edge of the plateau. The western branch of the PF crosses the plateau at a distance of ∼250 km to the east of the SAF. Comparison with a section across the Falkland Current farther downstream shows that its deep part subsequently joins the SAF on the northern side of the plateau where the 2000–3000 m isobaths converge in the steep Falkland Escarpment. The result of this two-stage bathymetric effect is a net transfer of at least 10 Sv from the PF to the SAF at the crossing of the Falkland Plateau.

Full access
Madeleine K. Youngs, Andrew F. Thompson, M. Mar Flexas, and Karen J. Heywood

Abstract

The complex export pathways that connect the surface waters of the Weddell Sea with the Antarctic Circumpolar Current influence water mass modification, nutrient fluxes, and ecosystem dynamics. To study this exchange, 40 surface drifters, equipped with temperature sensors, were released into the northwestern Weddell Sea’s continental shelf and slope frontal system in late January 2012. Comparison of the drifter trajectories with a similar deployment in early February 2007 provides insight into the interannual variability of the surface circulation in this region. Observed differences in the 2007 and 2012 drifter trajectories are related to a variable surface circulation responding to changes in wind stress curl over the Weddell Gyre. Differences between northwestern Weddell Sea properties in 2007 and 2012 include 1) an enhanced cyclonic wind stress forcing over the Weddell Gyre in 2012; 2) an acceleration of the Antarctic Slope Current (ASC) and an offshore shift of the primary drifter export pathway in 2012; and 3) a strengthening of the Coastal Current (CC) over the continental shelf in 2007. The relationship between wind stress forcing and surface circulation is reproduced over a longer time period in virtual drifter deployments advected by a remotely sensed surface velocity product. The mean offshore position and speed of the drifter trajectories are correlated with the wind stress curl over the Weddell Gyre, although with different temporal lags. The drifter observations are consistent with recent modeling studies suggesting that Weddell Sea boundary current variability can significantly impact the rate and source of exported surface waters to the Scotia Sea, a process that determines regional chlorophyll distributions.

Full access
Andrew F. Thompson, Ayah Lazar, Christian Buckingham, Alberto C. Naveira Garabato, Gillian M. Damerell, and Karen J. Heywood

Abstract

The importance of submesoscale instabilities, particularly mixed layer baroclinic instability and symmetric instability, on upper-ocean mixing and energetics is well documented in regions of strong, persistent fronts such as the Kuroshio and the Gulf Stream. Less attention has been devoted to studying submesoscale flows in the open ocean, far from long-term, mean geostrophic fronts, characteristic of a large proportion of the global ocean. This study presents a year-long, submesoscale-resolving time series of near-surface buoyancy gradients, potential vorticity, and instability characteristics, collected by ocean gliders, that provides insight into open-ocean submesoscale dynamics over a full annual cycle. The gliders continuously sampled a 225 km2 region in the subtropical northeast Atlantic, measuring temperature, salinity, and pressure along 292 short (~20 km) hydrographic sections. Glider observations show a seasonal cycle in near-surface stratification. Throughout the fall (September–November), the mixed layer deepens, predominantly through gravitational instability, indicating that surface cooling dominates submesoscale restratification processes. During winter (December–March), mixed layer depths are more variable, and estimates of the balanced Richardson number, which measures the relative importance of lateral and vertical buoyancy gradients, depict conditions favorable to symmetric instability. The importance of mixed layer instabilities on the restratification of the mixed layer, as compared with surface heating and cooling, shows that submesoscale processes can reverse the sign of an equivalent heat flux up to 25% of the time during winter. These results demonstrate that the open-ocean mixed layer hosts various forced and unforced instabilities, which become more prevalent during winter, and emphasize that accurate parameterizations of submesoscale processes are needed throughout the ocean.

Full access