Search Results

You are looking at 11 - 20 of 30 items for

  • Author or Editor: Kristopher B. Karnauskas x
  • Refine by Access: All Content x
Clear All Modify Search
Elizabeth A. Maroon
,
Jennifer E. Kay
, and
Kristopher B. Karnauskas

ABSTRACT

Many modeling studies have shown that the Atlantic meridional overturning circulation (AMOC) will weaken under increased greenhouse gas forcing, but the influence of AMOC internal variability on climate change in the context of a large initial condition ensemble has received less attention. Here, the Community Earth System Model Large Ensemble (CESM LE) is used to separate the AMOC-forced response from AMOC internal variability, and then assess their joint influence on surface warming. Similar to other models, the CESM LE projects a weakening AMOC in response to increased greenhouse gas forcing caused by freshening and decreased buoyancy fluxes in the North Atlantic. Yet if this forced response is removed using the ensemble mean, there is a positive relationship between global surface warming and AMOC strength. In other words, when the AMOC strengthens relative to the ensemble mean (i.e., weakens less), global surface warming increases relative to the ensemble mean response. This unforced surface warming occurs in northern Eurasia and in the Nordic and Barents Seas near the sea ice edge. Comparison of CESM simulations with and without a dynamic ocean shows that the unforced surface warming in the Nordic and Barents Seas results from both ocean and atmospheric circulation variability. In contrast, this comparison suggests that AMOC-associated Eurasian warming results from atmospheric circulation variability alone. In sum, the AMOC-forced response and AMOC internal variability have distinct relationships with surface temperature. Forced AMOC weakening decreases with surface warming, while unforced AMOC strengthening leads to surface warming.

Full access
William R. Leslie
,
Kristopher B. Karnauskas
, and
Jan H. Witting
Full access
Kristopher B. Karnauskas
,
Antonio J. Busalacchi
, and
Raghu Murtugudde

Abstract

The low-frequency variability of gap winds at the Isthmuses of Tehuantepec and Papagayo is investigated using a 17-yr wind stress dataset merging the remotely sensed observations of Special Sensor Microwave Imager (SSM/I) and Quick Scatterometer (QuikSCAT) satellite sensors. A decadal signal is identified in the Tehuantepec gap winds, which is shown to be related to the Atlantic tripole pattern (ATP). Using linear regression and spectral analysis, it is demonstrated that the low-frequency variability of the Tehuantepec gap winds is remotely forced by the ATP, and the Papagayo gap winds are primarily governed by El Niño–Southern Oscillation (ENSO) with the ATP being of secondary importance.

The Tehuantepec (Papagayo) time series of wind stress anomalies can be better reconstructed when the local cross-isthmus pressure difference and large-scale climate information such as the ATP (ENSO) are included, suggesting that there is important information in the large-scale flow that is not transmitted directly through the background sea level pressure gradient. The geostrophic modulation of the easterly trades in the western Caribbean also serve as a remote driver of the Papagayo gap winds, which is itself not fully independent from ENSO. Finally, it is suggested that precipitation variability in the Inter-Americas region is closely related to the same remote forcing as that of the Tehuantepec gap winds, being the ATP and associated large-scale atmospheric circulation.

Full access
Lei Zhang
,
Weiqing Han
,
Kristopher B. Karnauskas
,
Yuanlong Li
, and
Tomoki Tozuka

Abstract

The subtropical Indian Ocean dipole (SIOD) and Ningaloo Niño are the two dominant modes of interannual climate variability in the subtropical south Indian Ocean. Observations show that the SIOD has been weakening in the recent decades, while Ningaloo Niño has been strengthening. In this study, we investigate the causes for such changes by analyzing climate model experiments using the NCAR Community Earth System Model, version 1 (CESM1). Ensemble-mean results from CESM1 large-ensemble (CESM1-LE) show that the external forcing causes negligible changes in the amplitudes of the SIOD and Ningaloo Niño, suggesting a dominant role of internal climate variability. Meanwhile, results from CESM1 pacemaker experiments reveal that the observed changes in the two climate modes cannot be attributed to the effect of sea surface temperature anomalies (SSTA) in either the eastern tropical Pacific Ocean or tropical Indian Ocean. By further comparing different ensemble members from the CESM1-LE, we find that a warm pool dipole mode of decadal variability, with opposite SSTA in the southeast Indian Ocean and the western-central tropical Pacific Ocean plays an important role in driving the observed changes in the SIOD and Ningaloo Niño. These changes in the two climate modes have considerable impacts on precipitation and sea level variabilities in the south Indian Ocean region.

Full access
Lei Zhang
,
Kristopher B. Karnauskas
,
Jeffrey P. Donnelly
, and
Kerry Emanuel

Abstract

A downscaling approach is applied to future projection simulations from four CMIP5 global climate models to investigate the response of the tropical cyclone (TC) climatology over the North Pacific basin to global warming. Under the influence of the anthropogenic rise in greenhouse gases, TC-track density, power dissipation, and TC genesis exhibit robust increasing trends over the North Pacific, especially over the central subtropical Pacific region. The increase in North Pacific TCs is primarily manifested as increases in the intense and relatively weak TCs. Examination of storm duration also reveals that TCs over the North Pacific have longer lifetimes under global warming.

Through a genesis potential index, the mechanistic contributions of various physical climate factors to the simulated change in TC genesis are explored. More frequent TC genesis under global warming is mostly attributable to the smaller vertical wind shear and greater potential intensity (primarily due to higher sea surface temperature). In contrast, the effect of the saturation deficit of the free troposphere tends to suppress TC genesis, and the change in large-scale vorticity plays a negligible role.

Full access
Kristopher B. Karnauskas
,
Raghu Murtugudde
, and
Antonio J. Busalacchi

Abstract

An ocean general circulation model (OGCM) of the tropical Pacific Ocean is used to examine the effects of the Galápagos Islands on the El Niño–Southern Oscillation (ENSO). First, a series of experiments is conducted using the OGCM in a forced context, whereby an idealized El Niño event may be examined in cases with and without the Galápagos Islands. In this setup, the sensitivity of the sea surface temperature (SST) anomaly response to the presence of the Galápagos Islands is examined. Second, with the OGCM coupled to the atmosphere via zonal wind stress, experiments are conducted with and without the Galápagos Islands to determine how the Galápagos Islands influence the time scale of ENSO.

In the forced setup, the Galápagos Islands lead to a damped SST anomaly given an identical zonal wind stress perturbation. Mixed layer heat budget calculations implicate the entrainment mixing term, which confirms that the difference is due to the Galápagos Islands changing the background mean state, that is, the equatorial thermocline as diagnosed in a previous paper. In the hybrid coupled experiments, there is a clear shift in the power spectrum of SST anomalies in the eastern equatorial Pacific. Specifically, the Galápagos Islands lead to a shift in the ENSO time scale from a biennial to a quasi-quadrennial period. Mechanisms for the shift in ENSO time scale due to the Galápagos Islands are discussed in the context of well-known paradigms for the oscillatory nature of ENSO.

Full access
Indrani Ganguly
,
Alex O. Gonzalez
, and
Kristopher B. Karnauskas

Abstract

The intertropical convergence zone (ITCZ) is a zonally elongated band of near-surface convergence and precipitation near the equator. During boreal spring, the eastern Pacific ITCZ migrates latitudinally on daily to subseasonal time scales, and climate models exhibit the greatest ITCZ biases during this time of the year. In this work, we investigate the air–sea interactions associated with the variability in the eastern Pacific ITCZ’s latitudinal location for consecutive days when the ITCZ is only located north of the equator (nITCZ events) compared to when the ITCZ is on both sides of the equator or south of the equator (dsITCZ events) during February–April. The distribution of sea surface temperature (SST) anomalies and surface latent heat flux (SLHF) anomalies during the nITCZ and dsITCZ events follow the classic wind–evaporation–SST (WES) positive feedback mechanism. However, an alternative mechanism, embracing the effect of SST anomalies on vertical stratification and momentum mixing, gives rise to a negative WES feedback. Our results show that in the surface layer, there is a general progression of positive WES feedbacks happening in the weeks leading to the events followed by negative WES feedbacks occurring after the ITCZ events, with an alternate mechanism involving air–sea humidity differences limiting evaporation occurring in between. Additionally, the spatial structures of the components of the feedbacks are nearly mirror images for these opposite ITCZ events over the east Pacific during boreal spring. In closing, we find that understanding the air–sea interactions during daily to weekly varying ITCZ events (nITCZ and dsITCZ) helps to pinpoint how fundamental processes differ for ITCZs in different hemispheres.

Open access
Julie Jakoboski
,
Robert E. Todd
,
W. Brechner Owens
,
Kristopher B. Karnauskas
, and
Daniel L. Rudnick

Abstract

The Equatorial Undercurrent (EUC) encounters the Galápagos Archipelago on the equator as it flows eastward across the Pacific. The impact of the Galápagos Archipelago on the EUC in the eastern equatorial Pacific remains largely unknown. In this study, the path of the EUC as it reaches the Galápagos Archipelago is measured directly using high-resolution observations obtained by autonomous underwater gliders. Gliders were deployed along three lines that define a closed region with the Galápagos Archipelago as the eastern boundary and 93°W from 2°S to 2°N as the western boundary. Twelve transects were simultaneously occupied along the three lines during 52 days in April–May 2016. Analysis of individual glider transects and average sections along each line show that the EUC splits around the Galápagos Archipelago. Velocity normal to the transects is used to estimate net horizontal volume transport into the volume. Downward integration of the net horizontal transport profile provides an estimate of the time- and areal-averaged vertical velocity profile over the 52-day time period. Local maxima in vertical velocity occur at depths of 25 and 280 m with magnitudes of (1.7 ± 0.6) × 10−5 m s−1 and (8.0 ± 1.6) × 10−5 m s−1, respectively. Volume transport as a function of salinity indicates that water crossing 93°W south (north) of 0.4°S tends to flow around the south (north) side of the Galápagos Archipelago. Comparisons are made between previous observational and modeling studies with differences attributed to effects of the strong 2015/16 El Niño event, the annual cycle of local winds, and varying longitudes between studies of the equatorial Pacific.

Free access
Julie Jakoboski
,
Robert E. Todd
,
W. Brechner Owens
,
Kristopher B. Karnauskas
, and
Daniel L. Rudnick

Abstract

The Galápagos Archipelago lies on the equator in the path of the eastward flowing Pacific Equatorial Undercurrent (EUC). When the EUC reaches the archipelago, it upwells and bifurcates into a north and south branch around the archipelago at a latitude determined by topography. Since the Coriolis parameter (f) equals zero at the equator, strong velocity gradients associated with the EUC can result in Ertel potential vorticity (Q) having sign opposite that of planetary vorticity near the equator. Observations collected by underwater gliders deployed just west of the Galápagos Archipelago during 2013–16 are used to estimate Q and to diagnose associated instabilities that may impact the Galápagos Cold Pool. Estimates of Q are qualitatively conserved along streamlines, consistent with the 2.5-layer, inertial model of the EUC by Pedlosky. The Q with sign opposite of f is advected south of the Galápagos Archipelago when the EUC core is located south of the bifurcation latitude. The horizontal gradient of Q suggests that the region between 2°S and 2°N above 100 m is barotropically unstable, while limited regions are baroclinically unstable. Conditions conducive to symmetric instability are observed between the EUC core and the equator and within the southern branch of the undercurrent. Using 2-month and 3-yr averages, e-folding time scales are 2–11 days, suggesting that symmetric instability can persist on those time scales.

Significance Statement

The Pacific Ocean contains fast-moving currents near the equator and below the surface that result in instabilities and mixing. The Galápagos Archipelago lies directly in the path of the eastward-flowing Pacific Equatorial Undercurrent. There are few observations of what happens to the current when it reaches the Galápagos Archipelago, so theories and models of the instabilities and mixing resulting from these strong currents have not been well verified. The Repeat Observations by Gliders in the Equatorial Region (ROGER) project deployed autonomous underwater gliders to observe the current system in this region. The results show that a range of instabilities may be responsible for the cold sea surface temperature of the Galápagos Cold Pool and the generation of tropical instability waves.

Free access
Kristopher B. Karnauskas
,
Richard Seager
,
Alexey Kaplan
,
Yochanan Kushnir
, and
Mark A. Cane

Abstract

Decadal variations of very small amplitude [∼0.3°C in sea surface temperature (SST)] in the tropical Pacific Ocean, the genesis region of the interannual El Niño–Southern Oscillation (ENSO) phenomenon, have been shown to have powerful impacts on global climate. Future projections from different climate models do not agree on how this critical feature will change under the influence of anthropogenic forcing. A number of attempts have been made to resolve this issue by examining observed trends from the 1880s to the present, a period of rising atmospheric concentrations of greenhouse gases. A recent attempt concluded that the three major datasets disagreed on the trend in the equatorial gradient of SST. Using a corrected version of one of these datasets, and extending the analysis to the seasonal cycle, it is shown here that all agree that the equatorial Pacific zonal SST gradient has strengthened from 1880 to 2005 during the boreal fall when this gradient is normally strongest. This result appears to favor a theory for future changes based on ocean dynamics over one based on atmospheric energy considerations. Both theories incorporate the expectation, based on ENSO theory, that the zonal sea level pressure (SLP) gradient in the tropical Pacific is coupled to SST and should therefore strengthen along with the SST gradient. While the SLP gradient has not strengthened, it is found that it appears to have weakened only during boreal spring, consistent with the SST seasonal trends. Most of the coupled models included in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report underestimate the strengthening SST gradient in boreal fall, and show almost no change in the SLP gradient in any season. The observational analyses herein suggest that both theories are at work but with relative strengths that vary seasonally, and that the two theories need not be inconsistent with each other.

Full access