Search Results

You are looking at 11 - 19 of 19 items for

  • Author or Editor: Li Jia x
  • Refine by Access: All Content x
Clear All Modify Search
Fang-Fang Li, Ying-Hui Jia, Guang-Qian Wang, and Jun Qiu

Abstract

Sound waves have proven to be effective in promoting the interaction and aggregation of droplets. It is necessary to theoretically study the motion of particles in a sound field to develop new acoustic technology for precipitation enhancement. In this paper, the motion of cloud droplets due to a traveling sound wave field emitted from the ground to the air is simulated using the motion equation of point particles. The force condition of the particles in the oscillating flow field is analyzed. Meanwhile, the effects of droplet size, sound frequency, and sound pressure level (SPL) on the velocity and displacement of the droplets are also investigated. The results show that Stokes force and gravity play a dominant role in the falling process of cloud droplets, and the effect of the sound wave is mainly reflected in the fluctuation of velocity and displacement, which also promotes the displacement of cloud droplets to a certain extent. The maximum displacement increments of cloud droplets of 10 µm can reach 9200 µm due to the action of sound waves of 50 Hz and 143.4 dB. The SPL required for a noticeable velocity fluctuation for droplets of 10 µm with frequency of 50 Hz is 88.2 dB. When SPL < 100 dB and frequency > 500 Hz, the effect is negligible. The cloud droplet size plays a significant role in the motion, and the sound action is weaker for larger particles. For a smaller sound frequency and higher SPL, the effect of the sound wave is more prominent.

Restricted access
Feng Zhang, Jia-Ren Yan, Jiangnan Li, Kun Wu, Hironobu Iwabuchi, and Yi-Ning Shi

Abstract

The problem of solar spectral radiation is considered in a layer-based model, with scattering and absorption parallel to the plane for each medium (cloud, ocean, or aerosol layer) and optical properties assumed to be vertically inhomogeneous. A new radiative transfer (RT) method is proposed to deal with the variation of vertically inhomogeneous optical properties in the layers of a model for solar spectral radiation. This method uses the standard perturbation method to include the vertically inhomogeneous RT effects of cloud and snow. The accuracy of the new inhomogeneous RT solution is investigated systematically for both an idealized medium and realistic media of cloud and snow. For the idealized medium, the relative errors in reflection and absorption calculated by applying the homogeneous solution increase with optical depth and can exceed 20%. However, the relative errors when applying the inhomogeneous RT solution are limited to 4% in most cases. Observations show that stratocumulus clouds are vertically inhomogeneous. In the spectral band of 0.25–0.69 μm, the relative error in absorption with the inhomogeneous solution is 1.4% at most, but that with the homogeneous solution can be up to 7.4%. The effective radius of snow varies vertically. In the spectral band of 0.25–0.69 μm, the relative error in absorption with the homogeneous solution can be as much as 72% but is reduced to less than 40% by using the inhomogeneous solution. At the spectral wavelength of 0.94 μm, the results for reflection and absorption with the inhomogeneous solution are also more accurate than those with the homogeneous solution.

Full access
Quan Liu, Jiannong Quan, Xingcan Jia, Zhaobin Sun, Xia Li, Yang Gao, and Yangang Liu

Abstract

Aerosol samples were collected over Beijing, China, during several flights in November 2011. Aerosol composition of nonrefractory submicron particles (NR-PM1) was measured by an Aerodyne compact time-of-flight aerosol mass spectrometer (C-ToF-AMS). This measurement on the aircraft provided vertical distribution of aerosol species over Beijing, including sulfate (SO4), nitrate (NO3), ammonium (NH4), chloride (Chl), and organic aerosols [OA; hydrocarbon-like OA (HOA) and oxygenated OA (OOA)]. The observations showed that aerosol compositions varied drastically with altitude, especially near the top of the planetary boundary layer (PBL). On average, organics (34%) and nitrate (32%) were dominant components in the PBL, followed by ammonium (15%), sulfate (14%), and chloride (4%); in the free troposphere (FT), sulfate (34%) and organics (28%) were dominant components, followed by ammonium (20%), nitrate (19%), and chloride (1%). The dominant OA species was primarily HOA in the PBL but changed to OOA in the FT. For sulfate, nitrate, and ammonium, the sulfate mass fraction increased from the PBL to the FT, nitrate mass fraction decreased, and ammonium remained relatively constant. Analysis of the sulfate-to-nitrate molar ratio further indicated that this ratio was usually less than one in the FT but larger than one in the PBL. Further analysis revealed that the vertical aerosol composition profiles were influenced by complex processes, including PBL structure, regional transportation, emission variation, and the aging process of aerosols and gaseous precursors during vertical diffusion.

Full access
Jianjun Liang, Xiao-Ming Li, Jin Sha, Tong Jia, and Yongzheng Ren

Abstract

The life cycle of nonlinear internal waves (NIWs) to the southeast of Hainan Island in the northwestern South China Sea is investigated using synergistic satellite observations, in situ measurements, and numerical simulations. A three-dimensional, fully nonlinear and nonhydrostatic model with ultrafine resolution shows that a diurnal internal tide emanates from a sill in the Xisha Islands at approximately 215 km away from the local shelf break. The internal tide transits the deep basin toward the shelf break and reflects at the sea bottom and seasonal thermocline in the form of a wave beam. Arriving at the shelf break, the internal tide undergoes nonlinear transformation and produces an undular bore. Analyses of in situ measurements reveal that the undular bore appears as sharp depressions of the strong near-surface seasonal thermocline. The undular bore gradually evolves into an internal solitary wave train on the midshelf, which was detected by the spaceborne synthetic aperture radar. This finding has great implications for investigating NIWs in other coastal oceans where waves are controlled by remotely generated internal tides.

Open access
Bolan Gan, Lixin Wu, Fan Jia, Shujun Li, Wenju Cai, Hisashi Nakamura, Michael A. Alexander, and Arthur J. Miller

Abstract

Past and future changes in the Aleutian low are investigated by using observation-based sea level pressure (SLP) datasets and CMIP5 models. It is found that the Aleutian low intensity, measured by the North Pacific Index (NPI), has significantly strengthened during the twentieth century, with the observed centennial trend double the modeled counterpart for the multimodel average of historical simulations, suggesting compound signals of anthropogenic warming and natural variability. As climate warms under the strongest future warming scenario, the climatological-mean Aleutian low will continue to intensify and expand northward, as manifested in the significant decrease (−1.3 hPa) of the multimodel-averaged NPI, which is 1.6 times its unforced internal variability, and the increase in the central area of low pressure (SLP < 999.0 hPa), which expands about 7 times that in the twentieth century. A suite of idealized experiments further demonstrates that the deepening of the Aleutian low can be driven by an El Niño–like warming of the tropical Pacific sea surface temperature (SST), with a reduction in the climatological-mean zonal SST gradient, which overshadows the dampening effect of a weakened wintertime land–ocean thermal contrast on the Aleutian low change in a warmer climate. While the projected deepening of Aleutian low on multimodel average is robust, individual model portrayals vary primarily in magnitude. Intermodel difference in surface warming amplitude over the Asian continent, which is found to explain about 31% of the variance of the NPI changes across models, has a greater contribution than that in the spatial pattern of tropical Pacific SST warming (which explains about 23%) to model uncertainty in the projection of Aleutian low intensity.

Full access
Jian Ma, Sara C. da Silva, Aaron Levine, Yang Yang, Paul Fuentes, Li Zhou, Chuan-Chi Tu, Jia Hu, I. M. Shiromani Jayawardena, Antti Pessi, and DaNa Carlis

A four-day educational cruise navigated around the leeward side of Oahu and Kauai to observe the thermodynamic and dynamic features of the trade-wind wakes of these small islands by using weather balloons and other onboard atmospheric and oceanographic sensors. This cruise was proposed, designed, and implemented completely by graduate students from the School of Ocean and Earth Science and Technology at the University of Hawaii. The data collected during the cruise show, for the first time, strong sea/land breezes during day/night and their thermal effects on the island wake. This cruise provided the students with a significant, valuable, and meaningful opportunity to experience the complete process of proposing and undertaking field observations, as well as analyzing data and writing a scientific article.

Full access
Tao Li, Natalia Calvo, Jia Yue, James M. Russell III, Anne K. Smith, Martin G. Mlynczak, Amal Chandran, Xiankang Dou, and Alan Z. Liu

Abstract

In the Southern Hemisphere (SH) polar region, satellite observations reveal a significant upper-mesosphere cooling and a lower-thermosphere warming during warm ENSO events in December. An opposite pattern is observed in the tropical mesopause region. The observed upper-mesosphere cooling agrees with a climate model simulation. Analysis of the simulation suggests that enhanced planetary wave (PW) dissipation in the Northern Hemisphere (NH) high-latitude stratosphere during El Niño strengthens the Brewer–Dobson circulation and cools the equatorial stratosphere. This increases the magnitude of the SH stratosphere meridional temperature gradient and thus causes the anomalous stratospheric easterly zonal wind and early breakdown of the SH stratospheric polar vortex. The resulting perturbation to gravity wave (GW) filtering causes anomalous SH mesospheric eastward GW forcing and polar upwelling and cooling. In addition, constructive inference of ENSO and quasi-biennial oscillation (QBO) could lead to stronger stratospheric easterly zonal wind anomalies at the SH high latitudes in November and December and early breakdown of the SH stratospheric polar vortex during warm ENSO events in the easterly QBO phase (defined by the equatorial zonal wind at ~25 hPa). This would in turn cause much more SH mesospheric eastward GW forcing and much colder polar temperatures, and hence it would induce an early onset time of SH summer polar mesospheric clouds (PMCs). The opposite mechanism occurs during cold ENSO events in the westerly QBO phase. This implies that ENSO together with QBO could significantly modulate the breakdown time of SH stratospheric polar vortex and the onset time of SH PMC.

Full access
Lei Wang, Tandong Yao, Chenhao Chai, Lan Cuo, Fengge Su, Fan Zhang, Zhijun Yao, Yinsheng Zhang, Xiuping Li, Jia Qi, Zhidan Hu, Jingshi Liu, and Yuanwei Wang

Abstract

Monitoring changes in river runoff at the Third Pole (TP) is important because rivers in this region support millions of inhabitants in Asia and are very sensitive to climate change. Under the influence of climate change and intensified cryospheric melt, river runoff has changed markedly at the TP, with significant effects on the spatial and temporal water resource distribution that threaten water supply and food security for people living downstream. Despite some in situ observations and discharge estimates from state-of-the-art remote sensing technology, the total river runoff (TRR) for the TP has never been reliably quantified, and its response to climate change remains unclear. As part of the Chinese Academy of Sciences’ “Pan-Third Pole Environment Study for a Green Silk Road,” the TP-River project aims to construct a comprehensive runoff observation network at mountain outlets (where rivers leave the mountains and enter the plains) for 13 major rivers in the TP region, thereby enabling TRR to be accurately quantified. The project also integrates discharge estimates from remote sensing and cryosphere–hydrology modeling to investigate long-term changes in TRR and the relationship between the TRR variations and westerly/monsoon. Based on recent efforts, the project provides the first estimate (656 ± 23 billion m3) of annual TRR for the 13 TP rivers in 2018. The annual river runoff at the mountain outlets varies widely between the different TP rivers, ranging from 2 to 176 billion m3, with higher values mainly corresponding to rivers in the Indian monsoon domain, rather than in the westerly domain.

Open access
Rongqing Han, Hui Wang, Zeng-Zhen Hu, Arun Kumar, Weijing Li, Lindsey N. Long, Jae-Kyung E. Schemm, Peitao Peng, Wanqiu Wang, Dong Si, Xiaolong Jia, Ming Zhao, Gabriel A. Vecchi, Timothy E. LaRow, Young-Kwon Lim, Siegfried D. Schubert, Suzana J. Camargo, Naomi Henderson, Jeffrey A. Jonas, and Kevin J. E. Walsh

Abstract

An assessment of simulations of the interannual variability of tropical cyclones (TCs) over the western North Pacific (WNP) and its association with El Niño–Southern Oscillation (ENSO), as well as a subsequent diagnosis for possible causes of model biases generated from simulated large-scale climate conditions, are documented in the paper. The model experiments are carried out by the Hurricane Work Group under the U.S. Climate Variability and Predictability Research Program (CLIVAR) using five global climate models (GCMs) with a total of 16 ensemble members forced by the observed sea surface temperature and spanning the 28-yr period from 1982 to 2009. The results show GISS and GFDL model ensemble means best simulate the interannual variability of TCs, and the multimodel ensemble mean (MME) follows. Also, the MME has the closest climate mean annual number of WNP TCs and the smallest root-mean-square error to the observation.

Most GCMs can simulate the interannual variability of WNP TCs well, with stronger TC activities during two types of El Niño—namely, eastern Pacific (EP) and central Pacific (CP) El Niño—and weaker activity during La Niña. However, none of the models capture the differences in TC activity between EP and CP El Niño as are shown in observations. The inability of models to distinguish the differences in TC activities between the two types of El Niño events may be due to the bias of the models in response to the shift of tropical heating associated with CP El Niño.

Full access