Search Results
You are looking at 11 - 20 of 27 items for :
- Author or Editor: Lisan Yu x
- Article x
- Refine by Access: All Content x
Abstract
The meridional shift of the Kuroshio Extension (KE) front and changes in the formation of the North Pacific Subtropical Mode Water (STMW) during 1979–2018 are reported. The surface-to-subsurface structure of the KE front averaged over 142°–165°E has shifted poleward at a rate of ~0.23° ± 0.16° decade−1. The shift was caused mainly by the poleward shift of the downstream KE front (153°–165°E, ~0.41° ± 0.29° decade−1) and barely by the upstream KE front (142°–153°E). The long-term shift trend of the KE front showed two distinct behaviors before and after 2002. Before 2002, the surface KE front moved northward with a faster rate than the subsurface. After 2002, the surface KE front showed no obvious trend, but the subsurface KE front continued to move northward. The ventilation zone of the STMW, defined by the area between the 16° and 18°C isotherms or between the 25 and 25.5 kg m−3 isopycnals, contracted and displaced northward with a shoaling of the mixed layer depth h m before 2002 when the KE front moved northward. The STMW subduction rate was reduced by 0.76 Sv (63%; 1 Sv ≡ = 106 m3 s−1) during 1979–2018, most of which occurred before 2002. Of the three components affecting the total subduction rate, the temporal induction (−∂h m /∂t) was dominant accounting for 91% of the rate reduction, while the vertical pumping (−w mb) amounted to 8% and the lateral induction (−u mb ⋅ ∇h m ) was insignificant. The reduced temporal induction was attributed to both the contracted ventilation zone and the shallowed h m that were incurred by the poleward shift of KE front.
Abstract
The meridional shift of the Kuroshio Extension (KE) front and changes in the formation of the North Pacific Subtropical Mode Water (STMW) during 1979–2018 are reported. The surface-to-subsurface structure of the KE front averaged over 142°–165°E has shifted poleward at a rate of ~0.23° ± 0.16° decade−1. The shift was caused mainly by the poleward shift of the downstream KE front (153°–165°E, ~0.41° ± 0.29° decade−1) and barely by the upstream KE front (142°–153°E). The long-term shift trend of the KE front showed two distinct behaviors before and after 2002. Before 2002, the surface KE front moved northward with a faster rate than the subsurface. After 2002, the surface KE front showed no obvious trend, but the subsurface KE front continued to move northward. The ventilation zone of the STMW, defined by the area between the 16° and 18°C isotherms or between the 25 and 25.5 kg m−3 isopycnals, contracted and displaced northward with a shoaling of the mixed layer depth h m before 2002 when the KE front moved northward. The STMW subduction rate was reduced by 0.76 Sv (63%; 1 Sv ≡ = 106 m3 s−1) during 1979–2018, most of which occurred before 2002. Of the three components affecting the total subduction rate, the temporal induction (−∂h m /∂t) was dominant accounting for 91% of the rate reduction, while the vertical pumping (−w mb) amounted to 8% and the lateral induction (−u mb ⋅ ∇h m ) was insignificant. The reduced temporal induction was attributed to both the contracted ventilation zone and the shallowed h m that were incurred by the poleward shift of KE front.
Abstract
The authors present a study for determining the seasonal net surface heat flux over the tropical Pacific Ocean using an adjoint technique. A simple tropical ocean model with thermodynamics is chosen and the seasonal sea surface temperature (SST) observations are assimilated. A least-squares fitting of the model state to data is used. The cost function has a misfit term that measures the difference between the modeled and observed SST and two additional terms that penalize the departure of the estimated parameters from their prior information.
The adjoint method ensures that the flux pattern obtained is consistent with the model's dynamics and thermodynamics and is also in agreement with observations. Comparisons with heat flux atlases of Oberhuber and Fu et al. show that our adjoint calculations have successfully captured the main seasonal signals of the surface heat flux distribution over the tropical Pacific Ocean although, not surprisingly, some differences exist. The differences are examined from both thermodynamic and air-sea interaction viewpoints. Two experiments are conducted to study the effects of the prior information on the optimal solution.
Abstract
The authors present a study for determining the seasonal net surface heat flux over the tropical Pacific Ocean using an adjoint technique. A simple tropical ocean model with thermodynamics is chosen and the seasonal sea surface temperature (SST) observations are assimilated. A least-squares fitting of the model state to data is used. The cost function has a misfit term that measures the difference between the modeled and observed SST and two additional terms that penalize the departure of the estimated parameters from their prior information.
The adjoint method ensures that the flux pattern obtained is consistent with the model's dynamics and thermodynamics and is also in agreement with observations. Comparisons with heat flux atlases of Oberhuber and Fu et al. show that our adjoint calculations have successfully captured the main seasonal signals of the surface heat flux distribution over the tropical Pacific Ocean although, not surprisingly, some differences exist. The differences are examined from both thermodynamic and air-sea interaction viewpoints. Two experiments are conducted to study the effects of the prior information on the optimal solution.
Abstract
An in-depth data analysis was conducted to understand the occurrence of a strong sea surface temperature (SST) front in the central Bay of Bengal before the formation of Cyclone Nargis in April 2008. Nargis changed its course after encountering the front and tracked along the front until making landfall. One unique feature of this SST front was its coupling with high sea surface height anomalies (SSHAs), which is unusual for a basin where SST is normally uncorrelated with SSHA. The high SSHAs were associated with downwelling Rossby waves, and the interaction between downwelling and surface fresh waters was a key mechanism to account for the observed SST–SSHA coupling.
The near-surface salinity field in the bay is characterized by strong stratification and a pronounced horizontal gradient, with low salinity in the northeast. During the passage of downwelling Rossby waves, freshening of the surface layer was observed when surface velocities were southwestward. Horizontal convergence of freshwater associated with downwelling Rossby waves increased the buoyancy of the upper layer and caused the mixed layer to shoal to within a few meters of the surface. Surface heating trapped in the thin mixed layer caused the fresh layer to warm, whereas the increase in buoyancy from low-salinity waters enhanced the high SSHA associated with Rossby waves. Thus, high SST coincided with high SSHA.
The dominant role of salinity in controlling high SSHA suggests that caution should be exercised when computing hurricane heat potential in the bay from SSHA. This situation is different from most tropical oceans, where temperature has the dominant effect on SSHA.
Abstract
An in-depth data analysis was conducted to understand the occurrence of a strong sea surface temperature (SST) front in the central Bay of Bengal before the formation of Cyclone Nargis in April 2008. Nargis changed its course after encountering the front and tracked along the front until making landfall. One unique feature of this SST front was its coupling with high sea surface height anomalies (SSHAs), which is unusual for a basin where SST is normally uncorrelated with SSHA. The high SSHAs were associated with downwelling Rossby waves, and the interaction between downwelling and surface fresh waters was a key mechanism to account for the observed SST–SSHA coupling.
The near-surface salinity field in the bay is characterized by strong stratification and a pronounced horizontal gradient, with low salinity in the northeast. During the passage of downwelling Rossby waves, freshening of the surface layer was observed when surface velocities were southwestward. Horizontal convergence of freshwater associated with downwelling Rossby waves increased the buoyancy of the upper layer and caused the mixed layer to shoal to within a few meters of the surface. Surface heating trapped in the thin mixed layer caused the fresh layer to warm, whereas the increase in buoyancy from low-salinity waters enhanced the high SSHA associated with Rossby waves. Thus, high SST coincided with high SSHA.
The dominant role of salinity in controlling high SSHA suggests that caution should be exercised when computing hurricane heat potential in the bay from SSHA. This situation is different from most tropical oceans, where temperature has the dominant effect on SSHA.
Abstract
This study investigated the accuracy and physical representation of air–sea surface heat flux estimates for the Indian Ocean on annual, seasonal, and interannual time scales. Six heat flux products were analyzed, including the newly developed latent and sensible heat fluxes from the Objectively Analyzed Air–Sea Heat Fluxes (OAFlux) project and net shortwave and longwave radiation results from the International Satellite Cloud Climatology Project (ISCCP), the heat flux analysis from the Southampton Oceanography Centre (SOC), the National Centers for Environmental Prediction reanalysis 1 (NCEP1) and reanalysis-2 (NCEP2) datasets, and the European Centre for Medium-Range Weather Forecasts operational (ECMWF-OP) and 40-yr Re-Analysis (ERA-40) products.
This paper presents the analysis of the six products in depicting the mean, the seasonal cycle, and the interannual variability of the net heat flux into the ocean. Two time series of in situ flux measurements, one taken from a 1-yr Arabian Sea Experiment field program and the other from a 1-month Joint Air–Sea Monsoon Interaction Experiment (JASMINE) field program in the Bay of Bengal were used to evaluate the statistical properties of the flux products over the measurement periods. The consistency between the six products on seasonal and interannual time scales was investigated using a standard deviation analysis and a physically based correlation analysis.
The study has three findings. First of all, large differences exist in the mean value of the six heat flux products. Part of the differences may be attributable to the bias in the numerical weather prediction (NWP) models that underestimates the net heat flux into the Indian Ocean. Along the JASMINE ship tracks, the four NWP modeled mean fluxes all have a sign opposite to the observations, with NCEP1 being underestimated by 53 W m−2 (the least biased) and ECMWF-OP by 108 W m−2 (the most biased). At the Arabian Sea buoy site, the NWP mean fluxes also have an underestimation bias, with the smallest bias of 26 W m−2 (ERA-40) and the largest bias of 69 W m−2 (NCEP1). On the other hand, the OAFlux+ISCCP has the best comparison at both measurement sites. Second, the bias effect changes with the time scale. Despite the fact that the mean is biased significantly, there is no major bias in the seasonal cycle of all the products except for ECMWF-OP. The latter does not have a fixed mean due to the frequent updates of the model platform. Finally, among the four products (OAFlux+ISCCP, ERA-40, NCEP1, and NCEP2) that can be used for studying interannual variability, OAFlux+ISCCP and ERA-40 Q net have good consistency as judged from both statistical and physical measures. NCEP1 shows broad agreement with the two products, with varying details. By comparison, NCEP2 is the least representative of the Q net variabilities over the basin scale.
Abstract
This study investigated the accuracy and physical representation of air–sea surface heat flux estimates for the Indian Ocean on annual, seasonal, and interannual time scales. Six heat flux products were analyzed, including the newly developed latent and sensible heat fluxes from the Objectively Analyzed Air–Sea Heat Fluxes (OAFlux) project and net shortwave and longwave radiation results from the International Satellite Cloud Climatology Project (ISCCP), the heat flux analysis from the Southampton Oceanography Centre (SOC), the National Centers for Environmental Prediction reanalysis 1 (NCEP1) and reanalysis-2 (NCEP2) datasets, and the European Centre for Medium-Range Weather Forecasts operational (ECMWF-OP) and 40-yr Re-Analysis (ERA-40) products.
This paper presents the analysis of the six products in depicting the mean, the seasonal cycle, and the interannual variability of the net heat flux into the ocean. Two time series of in situ flux measurements, one taken from a 1-yr Arabian Sea Experiment field program and the other from a 1-month Joint Air–Sea Monsoon Interaction Experiment (JASMINE) field program in the Bay of Bengal were used to evaluate the statistical properties of the flux products over the measurement periods. The consistency between the six products on seasonal and interannual time scales was investigated using a standard deviation analysis and a physically based correlation analysis.
The study has three findings. First of all, large differences exist in the mean value of the six heat flux products. Part of the differences may be attributable to the bias in the numerical weather prediction (NWP) models that underestimates the net heat flux into the Indian Ocean. Along the JASMINE ship tracks, the four NWP modeled mean fluxes all have a sign opposite to the observations, with NCEP1 being underestimated by 53 W m−2 (the least biased) and ECMWF-OP by 108 W m−2 (the most biased). At the Arabian Sea buoy site, the NWP mean fluxes also have an underestimation bias, with the smallest bias of 26 W m−2 (ERA-40) and the largest bias of 69 W m−2 (NCEP1). On the other hand, the OAFlux+ISCCP has the best comparison at both measurement sites. Second, the bias effect changes with the time scale. Despite the fact that the mean is biased significantly, there is no major bias in the seasonal cycle of all the products except for ECMWF-OP. The latter does not have a fixed mean due to the frequent updates of the model platform. Finally, among the four products (OAFlux+ISCCP, ERA-40, NCEP1, and NCEP2) that can be used for studying interannual variability, OAFlux+ISCCP and ERA-40 Q net have good consistency as judged from both statistical and physical measures. NCEP1 shows broad agreement with the two products, with varying details. By comparison, NCEP2 is the least representative of the Q net variabilities over the basin scale.
Abstract
The present study used a new net surface heat flux (Q net) product obtained from the Objective Analyzed Air–Sea Fluxes (OAFlux) project and the International Satellite Cloud Climatology Project (ISCCP) to examine two specific issues—one is to which degree Q net controls seasonal variations of sea surface temperature (SST) in the tropical Atlantic Ocean (20°S–20°N, east of 60°W), and the other is whether the physical relation can serve as a measure to evaluate the physical representation of a heat flux product. To better address the two issues, the study included the analysis of three additional heat flux products: the Southampton Oceanographic Centre (SOC) heat flux analysis based on ship reports, and the model fluxes from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis and the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). The study also uses the monthly subsurface temperature fields from the World Ocean Atlas to help analyze the seasonal changes of the mixed layer depth (h MLD).
The study showed that the tropical Atlantic sector could be divided into two regimes based on the influence level of Q net. SST variability poleward of 5°S and 10°N is dominated by the annual cycle of Q net. In these regions the warming (cooling) of the sea surface is highly correlated with the increased (decreased) Q net confined in a relatively shallow (deep) h MLD. The seasonal evolution of SST variability is well predicted by simply relating the local Q net with a variable h MLD. On the other hand, the influence of Q net diminishes in the deep Tropics within 5°S and 10°N and ocean dynamic processes play a dominant role. The dynamics-induced changes in SST are most evident along the two belts, one of which is located on the equator and the other off the equator at about 3°N in the west, which tilts to about 10°N near the northwestern African coast.
The study also showed that if the degree of consistency between the correlation relationships of Q net, h MLD, and SST variability serves as a measure of the quality of the Q net product, then the Q net from OAFlux + ISCCP and ERA-40 are most physically representative, followed by SOC. The NCEP–NCAR Q net is least representative. It should be noted that the Q net from OAFlux + ISCCP and ERA-40 have a quite different annual mean pattern. OAFlux + ISCCP agrees with SOC in that the tropical Atlantic sector gains heat from the atmosphere on the annual mean basis, where the ERA-40 and the NCEP–NCAR model reanalyses indicate that positive Q net occurs only in the narrow equatorial band and in the eastern portion of the tropical basin. Nevertheless, seasonal variances of the Q net from OAFlux + ISCCP and ERA-40 are very similar once the respective mean is removed, which explains why the two agree with each other in accounting for the seasonal variability of SST.
In summary, the study suggests that an accurate estimation of surface heat flux is crucially important for understanding and predicting SST fluctuations in the tropical Atlantic Ocean. It also suggests that future emphasis on improving the surface heat flux estimation should be placed more on reducing the mean bias.
Abstract
The present study used a new net surface heat flux (Q net) product obtained from the Objective Analyzed Air–Sea Fluxes (OAFlux) project and the International Satellite Cloud Climatology Project (ISCCP) to examine two specific issues—one is to which degree Q net controls seasonal variations of sea surface temperature (SST) in the tropical Atlantic Ocean (20°S–20°N, east of 60°W), and the other is whether the physical relation can serve as a measure to evaluate the physical representation of a heat flux product. To better address the two issues, the study included the analysis of three additional heat flux products: the Southampton Oceanographic Centre (SOC) heat flux analysis based on ship reports, and the model fluxes from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis and the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). The study also uses the monthly subsurface temperature fields from the World Ocean Atlas to help analyze the seasonal changes of the mixed layer depth (h MLD).
The study showed that the tropical Atlantic sector could be divided into two regimes based on the influence level of Q net. SST variability poleward of 5°S and 10°N is dominated by the annual cycle of Q net. In these regions the warming (cooling) of the sea surface is highly correlated with the increased (decreased) Q net confined in a relatively shallow (deep) h MLD. The seasonal evolution of SST variability is well predicted by simply relating the local Q net with a variable h MLD. On the other hand, the influence of Q net diminishes in the deep Tropics within 5°S and 10°N and ocean dynamic processes play a dominant role. The dynamics-induced changes in SST are most evident along the two belts, one of which is located on the equator and the other off the equator at about 3°N in the west, which tilts to about 10°N near the northwestern African coast.
The study also showed that if the degree of consistency between the correlation relationships of Q net, h MLD, and SST variability serves as a measure of the quality of the Q net product, then the Q net from OAFlux + ISCCP and ERA-40 are most physically representative, followed by SOC. The NCEP–NCAR Q net is least representative. It should be noted that the Q net from OAFlux + ISCCP and ERA-40 have a quite different annual mean pattern. OAFlux + ISCCP agrees with SOC in that the tropical Atlantic sector gains heat from the atmosphere on the annual mean basis, where the ERA-40 and the NCEP–NCAR model reanalyses indicate that positive Q net occurs only in the narrow equatorial band and in the eastern portion of the tropical basin. Nevertheless, seasonal variances of the Q net from OAFlux + ISCCP and ERA-40 are very similar once the respective mean is removed, which explains why the two agree with each other in accounting for the seasonal variability of SST.
In summary, the study suggests that an accurate estimation of surface heat flux is crucially important for understanding and predicting SST fluctuations in the tropical Atlantic Ocean. It also suggests that future emphasis on improving the surface heat flux estimation should be placed more on reducing the mean bias.
Abstract
Daily latent and sensible heat fluxes for the Atlantic Ocean from 1988 to 1999 with 1° × 1° resolution have been recently developed at Woods Hole Oceanographic Institution (WHOI) by using a variational object analysis approach. The present study evaluated the degree of improvement made by the WHOI analysis using in situ buoy/ship measurements as verification data. The measurements were taken from the following field experiments: the five-buoy Subduction Experiment in the eastern subtropical North Atlantic, three coastal field programs in the western Atlantic, two winter cruises by R/V Knorr from the Labrador Sea Deep Convection Experiment, and the Pilot Research Moored Array in the Tropical Atlantic (PIRATA). The differences between the observed and the WHOI-analyzed fluxes and surface meteorological variables were quantified. Comparisons with the outputs from two numerical weather prediction (NWP) models were also conducted.
The mean and daily variability of the latent and sensible heat fluxes from the WHOI analysis are an improvement over the NWP fluxes at all of the measurement sites. The improved flux representation is due to the use of not only a better flux algorithm but also the improved estimates for flux-related variables. The mean differences from the observations in latent heat flux and sensible heat flux, respectively, range from 2.9 (3% of the corresponding mean measurement value) and 1.0 W m−2 (13%) at the Subduction Experiment site, to 11.9 (13%) and 0.7 W m−2 (11%) across the PIRATA array, to 15.9 (20%) and 10.5 W m−2 (34%) at the coastal buoy sites, to 8.7 (7%) and 9.7 W m−2 (6%) along the Knorr cruise tracks. The study also suggests that further improvement in the accuracy of latent and sensible heat fluxes will depend on the availability of high-quality SST observations and improved representation/observations of air humidity in the tropical Atlantic.
Abstract
Daily latent and sensible heat fluxes for the Atlantic Ocean from 1988 to 1999 with 1° × 1° resolution have been recently developed at Woods Hole Oceanographic Institution (WHOI) by using a variational object analysis approach. The present study evaluated the degree of improvement made by the WHOI analysis using in situ buoy/ship measurements as verification data. The measurements were taken from the following field experiments: the five-buoy Subduction Experiment in the eastern subtropical North Atlantic, three coastal field programs in the western Atlantic, two winter cruises by R/V Knorr from the Labrador Sea Deep Convection Experiment, and the Pilot Research Moored Array in the Tropical Atlantic (PIRATA). The differences between the observed and the WHOI-analyzed fluxes and surface meteorological variables were quantified. Comparisons with the outputs from two numerical weather prediction (NWP) models were also conducted.
The mean and daily variability of the latent and sensible heat fluxes from the WHOI analysis are an improvement over the NWP fluxes at all of the measurement sites. The improved flux representation is due to the use of not only a better flux algorithm but also the improved estimates for flux-related variables. The mean differences from the observations in latent heat flux and sensible heat flux, respectively, range from 2.9 (3% of the corresponding mean measurement value) and 1.0 W m−2 (13%) at the Subduction Experiment site, to 11.9 (13%) and 0.7 W m−2 (11%) across the PIRATA array, to 15.9 (20%) and 10.5 W m−2 (34%) at the coastal buoy sites, to 8.7 (7%) and 9.7 W m−2 (6%) along the Knorr cruise tracks. The study also suggests that further improvement in the accuracy of latent and sensible heat fluxes will depend on the availability of high-quality SST observations and improved representation/observations of air humidity in the tropical Atlantic.
Abstract
Surface meteorological variables and turbulent heat fluxes in the National Centers for Environmental Prediction–National Center for Atmospheric Research reanalyses 1 and 2 (NCEP1 and NCEP2) and the analysis from the operational system of the European Centre for Medium-Range Weather Forecasts (ECMWF) are compared with high-quality moored buoy observations in regions of the Atlantic including the eastern North Atlantic, the coastal regions of the western North Atlantic, and the Tropics. The buoy latent and sensible heat fluxes are determined from buoy measurements using the recently improved Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) flux algorithm.
The time mean oceanic heat loss from the model analyses is systematically overestimated in all the regions. The overestimation in latent heat loss ranges from about 14 W m−2 (13%) in the eastern subtropical North Atlantic to about 29 W m−2 (30%) in the Tropics to about 30 W m−2 (49%) in the midlatitude coastal areas, where the overestimation in sensible heat flux reaches about 20 W m−2 (60%). Depending upon the region and the NWP model, these systematic overestimations are either reduced, or change to underestimations, or remain unchanged when the TOGA COARE flux algorithm is used to recalculate the fluxes. The bias in surface meteorological variables, one of the major factors related to the biases in the revised NWP heat fluxes, varies with region and NWP analysis. Generally the temperature and humidity biases in the coastal regions are much larger than other regions. In the extratropical regions, NCEP1 and NCEP2 generally show a wet bias, which is mainly responsible for the underestimation in the revised NWP latent heat loss. In the Tropics a dry bias is found in the NWP analyses, particularly in ECMWF and NCEP2, which contributes to the overestimation in the revised NWP latent heat loss. Compared to NCEP1, NCEP2 shows less cold bias in 2-m air temperature and thus less biased sensible heat flux; NCEP2 also shows less humid bias in 2-m humidity in the extratropical regions but more dry bias in 2-m humidity in the Tropics, either of which leads to a more biased latent heat flux in NCEP2.
Despite the significant biases in the NWP surface fields and the poor representation of short-time sea surface temperature variability, the NWP models are able to represent the dominant short-time variability in other basic variables and thus the variability in heat fluxes in the wintertime coastal regions of the western North Atlantic (on timescales of 3–4 days and 1 week) and the northern and southern subtropical regions (on a timescale of about 2 weeks), but ECMWF and particularly the NCEP analyses do not represent well the 2–3-week variability in the tropical Atlantic.
Abstract
Surface meteorological variables and turbulent heat fluxes in the National Centers for Environmental Prediction–National Center for Atmospheric Research reanalyses 1 and 2 (NCEP1 and NCEP2) and the analysis from the operational system of the European Centre for Medium-Range Weather Forecasts (ECMWF) are compared with high-quality moored buoy observations in regions of the Atlantic including the eastern North Atlantic, the coastal regions of the western North Atlantic, and the Tropics. The buoy latent and sensible heat fluxes are determined from buoy measurements using the recently improved Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) flux algorithm.
The time mean oceanic heat loss from the model analyses is systematically overestimated in all the regions. The overestimation in latent heat loss ranges from about 14 W m−2 (13%) in the eastern subtropical North Atlantic to about 29 W m−2 (30%) in the Tropics to about 30 W m−2 (49%) in the midlatitude coastal areas, where the overestimation in sensible heat flux reaches about 20 W m−2 (60%). Depending upon the region and the NWP model, these systematic overestimations are either reduced, or change to underestimations, or remain unchanged when the TOGA COARE flux algorithm is used to recalculate the fluxes. The bias in surface meteorological variables, one of the major factors related to the biases in the revised NWP heat fluxes, varies with region and NWP analysis. Generally the temperature and humidity biases in the coastal regions are much larger than other regions. In the extratropical regions, NCEP1 and NCEP2 generally show a wet bias, which is mainly responsible for the underestimation in the revised NWP latent heat loss. In the Tropics a dry bias is found in the NWP analyses, particularly in ECMWF and NCEP2, which contributes to the overestimation in the revised NWP latent heat loss. Compared to NCEP1, NCEP2 shows less cold bias in 2-m air temperature and thus less biased sensible heat flux; NCEP2 also shows less humid bias in 2-m humidity in the extratropical regions but more dry bias in 2-m humidity in the Tropics, either of which leads to a more biased latent heat flux in NCEP2.
Despite the significant biases in the NWP surface fields and the poor representation of short-time sea surface temperature variability, the NWP models are able to represent the dominant short-time variability in other basic variables and thus the variability in heat fluxes in the wintertime coastal regions of the western North Atlantic (on timescales of 3–4 days and 1 week) and the northern and southern subtropical regions (on a timescale of about 2 weeks), but ECMWF and particularly the NCEP analyses do not represent well the 2–3-week variability in the tropical Atlantic.
Abstract
A new daily latent and sensible flux product developed at the Woods Hole Oceanographic Institution (WHOI) with 1° × 1° resolution for the Atlantic Ocean (65°S–65°N) for the period from 1988 to 1999 was presented. The flux product was developed by using a variational objective analysis approach to obtain best estimates of the flux-related basic surface meteorological variables (e.g., wind speed, air humidity, air temperature, and sea surface temperature) through synthesizing satellite data and outputs of numerical weather prediction (NWP) models at the National Centers for Environmental Prediction (NCEP) and the European Centre for Medium-Range Weather Forecasts (ECMWF). The state-of-the-art bulk flux algorithm 2.6a, developed from the field experiments of the Coupled Ocean–Atmosphere Response Experiment (COARE), was applied to compute the flux fields.
The study focused on analyzing the mean field properties of the WHOI daily latent and sensible heat fluxes and their comparisons with the ship-based climatology from the Southampton Oceanography Centre (SOC) and NWP outputs. It is found that the WHOI yearly mean fluxes are consistent with the SOC climatology in both structure and amplitude, but the WHOI yearly mean basic variables are not always consistent with SOC; the better agreement in the fluxes is due to the effects of error compensation during variable combinations. Both ECMWF and NCEP–Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP) Reanalysis-2 (NCEP2) model data have larger turbulent heat loss (∼20 W m−2) than the WHOI product. Nevertheless, the WHOI fluxes agree well with the NCEP-2 Reanalysis fluxes in structure and the trend of year-to-year variations, but not with the ECMWF operational outputs; the latter have a few abrupt changes coinciding with the modifications in the model forecast–analysis system. The degree of impact of the model changes on the basic variables is not as dramatic, a factor that justifies the inclusion of the basic variables, not the fluxes, from the ECMWF operational model in the synthesis. The flux algorithms of the two NWP models give a larger latent and sensible heat loss. Recalculating the NWP fluxes using the COARE algorithm considerably reduces the strength but does not replicate the WHOI results. The present analysis could not quantify the degree of improvement in the mean aspect of the WHOI daily flux fields as accurate basinwide verification data are lacking.
This study is the first to demonstrate that the synthesis approach is a useful tool for combining the NWP and satellite data sources and improving the mean representativeness of daily basic variable fields and, hence, the daily flux fields. It is anticipated that such an approach may become increasingly relied upon in the preparation of future high-quality flux products.
Abstract
A new daily latent and sensible flux product developed at the Woods Hole Oceanographic Institution (WHOI) with 1° × 1° resolution for the Atlantic Ocean (65°S–65°N) for the period from 1988 to 1999 was presented. The flux product was developed by using a variational objective analysis approach to obtain best estimates of the flux-related basic surface meteorological variables (e.g., wind speed, air humidity, air temperature, and sea surface temperature) through synthesizing satellite data and outputs of numerical weather prediction (NWP) models at the National Centers for Environmental Prediction (NCEP) and the European Centre for Medium-Range Weather Forecasts (ECMWF). The state-of-the-art bulk flux algorithm 2.6a, developed from the field experiments of the Coupled Ocean–Atmosphere Response Experiment (COARE), was applied to compute the flux fields.
The study focused on analyzing the mean field properties of the WHOI daily latent and sensible heat fluxes and their comparisons with the ship-based climatology from the Southampton Oceanography Centre (SOC) and NWP outputs. It is found that the WHOI yearly mean fluxes are consistent with the SOC climatology in both structure and amplitude, but the WHOI yearly mean basic variables are not always consistent with SOC; the better agreement in the fluxes is due to the effects of error compensation during variable combinations. Both ECMWF and NCEP–Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP) Reanalysis-2 (NCEP2) model data have larger turbulent heat loss (∼20 W m−2) than the WHOI product. Nevertheless, the WHOI fluxes agree well with the NCEP-2 Reanalysis fluxes in structure and the trend of year-to-year variations, but not with the ECMWF operational outputs; the latter have a few abrupt changes coinciding with the modifications in the model forecast–analysis system. The degree of impact of the model changes on the basic variables is not as dramatic, a factor that justifies the inclusion of the basic variables, not the fluxes, from the ECMWF operational model in the synthesis. The flux algorithms of the two NWP models give a larger latent and sensible heat loss. Recalculating the NWP fluxes using the COARE algorithm considerably reduces the strength but does not replicate the WHOI results. The present analysis could not quantify the degree of improvement in the mean aspect of the WHOI daily flux fields as accurate basinwide verification data are lacking.
This study is the first to demonstrate that the synthesis approach is a useful tool for combining the NWP and satellite data sources and improving the mean representativeness of daily basic variable fields and, hence, the daily flux fields. It is anticipated that such an approach may become increasingly relied upon in the preparation of future high-quality flux products.
Abstract
A near-surface specific humidity (Qa) and air temperature (Ta) climatology on daily and 0.25° grids was constructed by the objectively analyzed air–sea fluxes (OAFlux) project by objectively merging two recent satellite-derived high-resolution analyses, the OAFlux existing 1° analysis, and atmospheric reanalyses. The two satellite products include the multi-instrument microwave regression (MIMR) Qa and Ta analysis and the Goddard Satellite-Based Surface Turbulent Fluxes, version 3 (GSSTF3), Qa analysis. This study assesses the degree of improvement made by OAFlux using buoy time series measurements at 137 locations and a global empirical orthogonal function (EOF) analysis. There are a total of 130 855 collocated daily values for Qa and 283 012 collocated daily values for Ta in the buoy evaluation. It is found that OAFlux Qa has a mean difference close to 0 and a root-mean-square (RMS) difference of 0.73 g kg−1, and Ta has a mean difference of −0.03°C and an RMS difference of 0.45°C. OAFlux shows no major systematic bias with respect to buoy measurements over all buoy locations except for the vicinity of the Gulf Stream boundary current, where the RMS difference exceeds 1.8°C in Ta and 1.2 g kg−1 in Qa. The buoy evaluation indicates that OAFlux represents an improvement over MIMR and GSSTF3. The global EOF-based intercomparison analysis indicates that OAFlux has a similar spatial–temporal variability pattern with that of three atmospheric reanalyses including MERRA, NCEP-1, and ERA-Interim, but that it differs from GSSTF3 and the Climate Forecast System Reanalysis (CFSR).
Abstract
A near-surface specific humidity (Qa) and air temperature (Ta) climatology on daily and 0.25° grids was constructed by the objectively analyzed air–sea fluxes (OAFlux) project by objectively merging two recent satellite-derived high-resolution analyses, the OAFlux existing 1° analysis, and atmospheric reanalyses. The two satellite products include the multi-instrument microwave regression (MIMR) Qa and Ta analysis and the Goddard Satellite-Based Surface Turbulent Fluxes, version 3 (GSSTF3), Qa analysis. This study assesses the degree of improvement made by OAFlux using buoy time series measurements at 137 locations and a global empirical orthogonal function (EOF) analysis. There are a total of 130 855 collocated daily values for Qa and 283 012 collocated daily values for Ta in the buoy evaluation. It is found that OAFlux Qa has a mean difference close to 0 and a root-mean-square (RMS) difference of 0.73 g kg−1, and Ta has a mean difference of −0.03°C and an RMS difference of 0.45°C. OAFlux shows no major systematic bias with respect to buoy measurements over all buoy locations except for the vicinity of the Gulf Stream boundary current, where the RMS difference exceeds 1.8°C in Ta and 1.2 g kg−1 in Qa. The buoy evaluation indicates that OAFlux represents an improvement over MIMR and GSSTF3. The global EOF-based intercomparison analysis indicates that OAFlux has a similar spatial–temporal variability pattern with that of three atmospheric reanalyses including MERRA, NCEP-1, and ERA-Interim, but that it differs from GSSTF3 and the Climate Forecast System Reanalysis (CFSR).
Abstract
Coherent, large-scale shifts in the paths of the Gulf Stream (GS) and the Kuroshio Extension (KE) occur on interannual to decadal time scales. Attention has usually been drawn to causes for these shifts in the overlying atmosphere, with some built-in delay of up to a few years resulting from propagation of wind-forced variability within the ocean. However, these shifts in the latitudes of separated western boundary currents can cause substantial changes in SST, which may influence the synoptic atmospheric variability with little or no time delay. Various measures of wintertime atmospheric variability in the synoptic band (2–8 days) are examined using a relatively new dataset for air–sea exchange [Objectively Analyzed Air–Sea Fluxes (OAFlux)] and subsurface temperature indices of the Gulf Stream and Kuroshio path that are insulated from direct air–sea exchange, and therefore are preferable to SST. Significant changes are found in the atmospheric variability following changes in the paths of these currents, sometimes in a local fashion such as meridional shifts in measures of local storm tracks, and sometimes in nonlocal, broad regions coincident with and downstream of the oceanic forcing. Differences between the North Pacific (KE) and North Atlantic (GS) may be partly related to the more zonal orientation of the KE and the stronger SST signals of the GS, but could also be due to differences in mean storm-track characteristics over the North Pacific and North Atlantic.
Abstract
Coherent, large-scale shifts in the paths of the Gulf Stream (GS) and the Kuroshio Extension (KE) occur on interannual to decadal time scales. Attention has usually been drawn to causes for these shifts in the overlying atmosphere, with some built-in delay of up to a few years resulting from propagation of wind-forced variability within the ocean. However, these shifts in the latitudes of separated western boundary currents can cause substantial changes in SST, which may influence the synoptic atmospheric variability with little or no time delay. Various measures of wintertime atmospheric variability in the synoptic band (2–8 days) are examined using a relatively new dataset for air–sea exchange [Objectively Analyzed Air–Sea Fluxes (OAFlux)] and subsurface temperature indices of the Gulf Stream and Kuroshio path that are insulated from direct air–sea exchange, and therefore are preferable to SST. Significant changes are found in the atmospheric variability following changes in the paths of these currents, sometimes in a local fashion such as meridional shifts in measures of local storm tracks, and sometimes in nonlocal, broad regions coincident with and downstream of the oceanic forcing. Differences between the North Pacific (KE) and North Atlantic (GS) may be partly related to the more zonal orientation of the KE and the stronger SST signals of the GS, but could also be due to differences in mean storm-track characteristics over the North Pacific and North Atlantic.