Search Results

You are looking at 11 - 20 of 23 items for

  • Author or Editor: Luc Rainville x
  • Refine by Access: All Content x
Clear All Modify Search
Olivier Asselin
,
Leif N. Thomas
,
William R. Young
, and
Luc Rainville

Abstract

Fast-moving synoptic-scale atmospheric disturbances produce large-scale near-inertial waves in the ocean mixed layer. In this paper, we analyze the distortion of such waves by smaller-scale barotropic eddies, with a focus on the evolution of the horizontal wavevector k under the effects of straining and refraction. The model is initialized with a horizontally uniform (k = 0) surface-confined near-inertial wave, which then evolves according to the phase-averaged model of Young and Ben Jelloul. A steady barotropic vortex dipole is first considered. Shear bands appear in the jet region as wave energy propagates downward and toward the anticyclone. When measured at a fixed location, both horizontal and vertical wavenumbers grow linearly with the time t elapsed since generation such that their ratio, the slope of wave bands, is time independent. Analogy with passive scalar dynamics suggests that straining should result in the exponential growth of |k|. Here instead, straining is ineffective, not only at the jet center, but also in its confluent and diffluent regions. Low modes rapidly escape below the anticyclonic core such that weakly dispersive high modes dominate in the surface layer. In the weakly dispersive limit, k = −tζ(x, y, t)/2 provided that (i) the eddy vertical vorticity ζ evolves according to the barotropic quasigeostrophic equation and (ii) k = 0 initially. In steady flows, straining is ineffective because k is always perpendicular to the flow. In unsteady flows, straining modifies the vorticity gradient and hence k, and may account for significant wave–eddy energy transfers.

Open access
Hayley V. Dosser
,
Luc Rainville
, and
John M. Toole

Abstract

Salinity and temperature profiles from drifting ice-tethered profilers in the Beaufort gyre region of the Canada Basin are used to characterize and quantify the regional near-inertial internal wave field over one year. Vertical displacements of potential density surfaces from the surface to 750-m depth are tracked from fall 2006 to fall 2007. Because of the time resolution and irregular sampling of the ice-tethered profilers, near-inertial frequency signals are marginally resolved. Complex demodulation is used to determine variations with a time scale of several days in the amplitude and phase of waves at a specified near-inertial frequency. Characteristics and variability of the wave field over the course of the year are investigated quantitatively and related to changes in surface wind forcing and sea ice cover.

Full access
An T. Nguyen
,
Patrick Heimbach
,
Vikram V. Garg
,
Victor Ocaña
,
Craig Lee
, and
Luc Rainville

Abstract

The lack of continuous spatial and temporal sampling of hydrographic measurements in large parts of the Arctic Ocean remains a major obstacle for quantifying mean state and variability of the Arctic Ocean circulation. This shortcoming motivates an assessment of the utility of Argo-type floats, the challenges of deploying such floats due to the presence of sea ice, and the implications of extended times of no surfacing on hydrographic inferences. Within the framework of an Arctic coupled ocean–sea ice state estimate that is constrained to available satellite and in situ observations, we establish metrics for quantifying the usefulness of such floats. The likelihood of float surfacing strongly correlates with the annual sea ice minimum cover. Within the float lifetime of 4–5 years, surfacing frequency ranges from 10–100 days in seasonally sea ice–covered regions to 1–3 years in multiyear sea ice–covered regions. The longer the float drifts under ice without surfacing, the larger the uncertainty in its position, which translates into larger uncertainties in hydrographic measurements. Below the mixed layer, especially in the western Arctic, normalized errors remain below 1, suggesting that measurements along a path whose only known positions are the beginning and end points can help constrain numerical models and reduce hydrographic uncertainties. The error assessment presented is a first step in the development of quantitative methods for guiding the design of observing networks. These results can and should be used to inform a float network design with suggested locations of float deployment and associated expected hydrographic uncertainties.

Free access
Samuel Brenner
,
Jim Thomson
,
Luc Rainville
,
Daniel Torres
,
Martin Doble
,
Jeremy Wilkinson
, and
Craig Lee

Abstract

Properties of the surface mixed layer (ML) are critical for understanding and predicting atmosphere–sea ice–ocean interactions in the changing Arctic Ocean. Mooring measurements are typically unable to resolve the ML in the Arctic due to the need for instruments to remain below the surface to avoid contact with sea ice and icebergs. Here, we use measurements from a series of three moorings installed for one year in the Beaufort Sea to demonstrate that upward-looking acoustic Doppler current profilers (ADCPs) installed on subsurface floats can be used to estimate ML properties. A method is developed for combining measured peaks in acoustic backscatter and inertial shear from the ADCPs to estimate the ML depth. Additionally, we use an inverse sound speed model to infer the summer ML temperature based on offsets in ADCP altimeter distance during open-water periods. The ADCP estimates of ML depth and ML temperature compare favorably with measurements made from mooring temperature sensors, satellite SST, and from an autonomous Seaglider. These methods could be applied to other extant mooring records to recover additional information about ML property changes and variability.

Open access
Zhongxiang Zhao
,
Matthew H. Alford
,
James B. Girton
,
Luc Rainville
, and
Harper L. Simmons

Abstract

A global map of open-ocean mode-1 M2 internal tides is constructed using sea surface height (SSH) measurements from multiple satellite altimeters during 1992–2012, representing a 20-yr coherent internal tide field. A two-dimensional plane wave fit method is employed to 1) suppress mesoscale contamination by extracting internal tides with both spatial and temporal coherence and 2) separately resolve multiple internal tidal waves. Global maps of amplitude, phase, energy, and flux of mode-1 M2 internal tides are presented. The M2 internal tides are mainly generated over topographic features, including continental slopes, midocean ridges, and seamounts. Internal tidal beams of 100–300 km width are observed to propagate hundreds to thousands of kilometers. Multiwave interference of some degree is widespread because of the M2 internal tide’s numerous generation sites and long-range propagation. The M2 internal tide propagates across the critical latitudes for parametric subharmonic instability (28.8°S/N) with little energy loss, consistent with the 2006 Internal Waves across the Pacific (IWAP) field measurements. In the eastern Pacific Ocean, the M2 internal tide loses significant energy in propagating across the equator; in contrast, little energy loss is observed in the equatorial zones of the Atlantic, Indian, and western Pacific Oceans. Global integration of the satellite observations yields a total energy of 36 PJ (1 PJ = 1015 J) for all the coherent mode-1 M2 internal tides. Finally, satellite observed M2 internal tides compare favorably with field mooring measurements and a global eddy-resolving numerical model.

Full access
Andy Pickering
,
Matthew Alford
,
Jonathan Nash
,
Luc Rainville
,
Maarten Buijsman
,
Dong Shan Ko
, and
Byungho Lim

Abstract

The Luzon Strait is the generation region for strong internal tides that radiate westward into the South China Sea and eastward into the western Pacific. Intrusions of the Kuroshio and strong mesoscale variability in the Luzon Strait can influence their generation and propagation. Here, the authors use eight moorings and two numerical models to investigate these relationships by quantifying the coherence of the diurnal and semidiurnal internal tides in the Luzon Strait. This study finds that the level of coherence of internal tide generation, energy, and energy flux is quite variable, depending on the specific location within the Luzon Strait. Large-scale spatial patterns in internal tide pressure and velocity exist across the region, shaped by the bathymetry, mean flow, and stratification. Internal tide coherence is lower (<30%) near large gradients in this pattern (predominantly along the eastern ridge), which are shifted by the variable Kuroshio and mesoscale fields. At other locations within the Luzon Strait, the internal tide is largely coherent (>80%), and simple calculations suggest that remote sources of internal tides could account for these small decreases in coherence. To the west of the Luzon Strait (away from the primary generation regions), the model suggests that diurnal internal tide energy is more coherent than semidiurnal.

Full access
Leif N. Thomas
,
Eric D. Skyllingstad
,
Luc Rainville
,
Verena Hormann
,
Luca Centurioni
,
James N. Moum
,
Olivier Asselin
, and
Craig M. Lee

Abstract

Along with boundary layer turbulence, downward radiation of near-inertial waves (NIWs) damps inertial oscillations (IOs) in the surface ocean; however, the latter can also energize abyssal mixing. Here we present observations made from a dipole vortex in the Iceland Basin where, after the period of direct wind forcing, IOs lost over half their kinetic energy (KE) in two inertial periods to radiation of NIWs with minimal turbulent dissipation of KE. The dipole’s vorticity gradient led to a rapid reduction in the NIW’s lateral wavelength via ζ refraction that was accompanied by isopycnal undulations below the surface mixed layer. Pressure anomalies associated with the undulations were correlated with the NIW’s velocity yielding an energy flux of 310 mW m−2 pointed antiparallel to the vorticity gradient and a downward flux of 1 mW m−2 capable of driving the observed drop in KE. The minimal role of turbulence in the energetics after the IOs had been generated by the winds was confirmed using a large-eddy simulation driven by the observed winds.

Significance Statement

We report direct observational estimates of the vector wave energy flux of a near-inertial wave. The energy flux points from high to low vorticity in the horizontal, consistent with the theory of ζ refraction. The downward energy flux dominates the observed damping of inertial motions over turbulent dissipation and mixing.

Open access
Luc Rainville
,
Craig M. Lee
,
K. Arulananthan
,
S. U. P. Jinadasa
,
Harindra J. S. Fernando
,
W. N. C. Priyadarshani
, and
Hemantha Wijesekera

Abstract

We present high-resolution sustained, persistent observations of the ocean around Sri Lanka from autonomous gliders collected over several years, a region with complex, variable circulation patterns connecting the Bay of Bengal and the Arabian Sea to each other and the rest of the Indian Ocean. The Seaglider surveys resolve seasonal to interannual variability in vertical and horizontal structure, allowing quantification of volume, heat, and freshwater fluxes, as well as the transformations and transports of key water mass classes across sections normal to the east (2014–15) and south (2016–19) coasts of Sri Lanka. The resulting transports point to the importance of both surface and subsurface flows and show that the direct pathway along the Sri Lankan coast plays a significant role in the exchanges of waters between the Arabian Sea and the Bay of Bengal. Significant section-to-section variability highlights the need for sustained, long-term observations to quantify the circulation pathways and dynamics associated with exchange between the Bay of Bengal and Arabian Sea and provides context for interpreting observations collected as “snapshots” of more limited duration.

Significance Statement

The strong seasonal variations of the wind in the Indian Ocean create large and rapid changes in the ocean’s properties near Sri Lanka. This variable and poorly observed circulation is very important for how temperature and salinity are distributed across the northern Indian Ocean, both at the surface and at depths. Long-term and repeated surveys from autonomous Seagliders allow us to understand how freshwater inflow, atmospheric forcing, and underlying ocean variability act to produce observed contrasts (spatial and seasonal) in upper-ocean structure of the Bay of Bengal and Arabian Sea.

Open access
Luc Rainville
,
T. M. Shaun Johnston
,
Glenn S. Carter
,
Mark A. Merrifield
,
Robert Pinkel
,
Peter F. Worcester
, and
Brian D. Dushaw

Abstract

Most of the M 2 internal tide energy generated at the Hawaiian Ridge radiates away in modes 1 and 2, but direct observation of these propagating waves is complicated by the complexity of the bathymetry at the generation region and by the presence of interference patterns. Observations from satellite altimetry, a tomographic array, and the R/P FLIP taken during the Farfield Program of the Hawaiian Ocean Mixing Experiment (HOME) are found to be in good agreement with the output of a high-resolution primitive equation model, simulating the generation and propagation of internal tides. The model shows that different modes are generated with different amplitudes along complex topography. Multiple sources produce internal tides that sum constructively and destructively as they propagate. The major generation sites can be identified using a simplified 2D idealized knife-edge ridge model. Four line sources located on the Hawaiian Ridge reproduce the interference pattern of sea surface height and energy flux density fields from the numerical model for modes 1 and 2. Waves from multiple sources and their interference pattern have to be taken into account to correctly interpret in situ observations and satellite altimetry.

Full access
Amy F. Waterhouse
,
Samuel M. Kelly
,
Zhongxiang Zhao
,
Jennifer A. MacKinnon
,
Jonathan D. Nash
,
Harper Simmons
,
Dmitry Brahznikov
,
Luc Rainville
,
Matthew Alford
, and
Rob Pinkel

Abstract

Low-mode internal tides, a dominant part of the internal wave spectrum, carry energy over large distances, yet the ultimate fate of this energy is unknown. Internal tides in the Tasman Sea are generated at Macquarie Ridge, south of New Zealand, and propagate northwest as a focused beam before impinging on the Tasmanian continental slope. In situ observations from the Tasman Sea capture synoptic measurements of the incident semidiurnal mode-1 internal-tide, which has an observed wavelength of 183 km and surface displacement of approximately 1 cm. Plane-wave fits to in situ and altimetric estimates of surface displacement agree to within a measurement uncertainty of 0.3 cm, which is the same order of magnitude as the nonstationary (not phase locked) mode-1 tide observed over a 40-day mooring deployment. Stationary energy flux, estimated from a plane-wave fit to the in situ observations, is directed toward Tasmania with a magnitude of 3.4 ± 1.4 kW m−1, consistent with a satellite estimate of 3.9 ± 2.2 kW m−1. Approximately 90% of the time-mean energy flux is due to the stationary tide. However, nonstationary velocity and pressure, which are typically 1/4 the amplitude of the stationary components, sometimes lead to instantaneous energy fluxes that are double or half of the stationary energy flux, overwhelming any spring–neap variability. Despite strong winds and intermittent near-inertial currents, the parameterized turbulent-kinetic-energy dissipation rate is small (i.e., 10−10 W kg−1) below the near surface and observations of mode-1 internal tide energy-flux convergence are indistinguishable from zero (i.e., the confidence intervals include zero), indicating little decay of the mode-1 internal tide within the Tasman Sea.

Open access