Search Results

You are looking at 11 - 20 of 48 items for

  • Author or Editor: M. E. Brooks x
  • Refine by Access: All Content x
Clear All Modify Search
C. E. P. BROOKS
and
WINNIFRED QUINNELL

Abstract

No Abstract Available.

Full access
S. E. Reynolds
,
M. Brook
, and
Mary Foulks Gourley

Abstract

A description of the known physical properties of a thunderstorm reveals that active charge separation occurs during that stage of the storm's life-cycle in which the growth of graupel by the accretion of supercooled droplets is the dominant process. Laboratory experiments under simulated thunderstorm conditions show that a graupel pellet, growing by the accretion of supercooled droplets, acquires negative charge as a result of collisions with ice crystals. Other experiments show that when two ice formations are placed in rubbing contact, the ice which is warmer, or which contains trace amounts of contaminants, acquires negative charge. Further experiments suggest that the charge separation results from potential differences which arise during the resolidification of a liquid layer formed at the ice-ice contact.

Calculations indicate that the graupel pellets in a thunderstorm, as a result of the acquisition of the latent heat of supercooled droplets, will achieve temperatures several degrees warmer than coexisting ice crystals. Thus the graupel pellets will acquire negative charge as a result of rubbing contacts with ice crystals. The graupel pellets have much higher fall velocities than ice crystals, thus accounting for the polarity of the main thunderstorm dipole. Measurements suggest that the amount of charge separated per graupelcrystal collision is adequate to account for the magnitude of the charges of the main dipole.

Full access
Jenni Rauhala
,
Harold E. Brooks
, and
David M. Schultz

Abstract

A tornado climatology for Finland is constructed from 1796 to 2007. The climatology consists of two datasets. A historical dataset (1796–1996) is largely constructed from newspaper archives and other historical archives and datasets, and a recent dataset (1997–2007) is largely constructed from eyewitness accounts sent to the Finnish Meteorological Institute and news reports. This article describes the process of collecting and evaluating possible tornado reports. Altogether, 298 Finnish tornado cases compose the climatology: 129 from the historical dataset and 169 from the recent dataset. An annual average of 14 tornado cases occur in Finland (1997–2007). A case with a significant tornado (F2 or stronger) occurs in our database on average every other year, composing 14% of all tornado cases. All documented tornadoes in Finland have occurred between April and November. As in the neighboring countries in northern Europe, July and August are the months with the maximum frequency of tornado cases, coincident with the highest lightning occurrence both over land and sea. Waterspouts tend to be favored later in the summer, peaking in August. The peak month for significant tornadoes is August. The diurnal peak for tornado cases is 1700–1859 local time.

Full access
Stephanie M. Verbout
,
Harold E. Brooks
,
Lance M. Leslie
, and
David M. Schultz

Abstract

Over the last 50 yr, the number of tornadoes reported in the United States has doubled from about 600 per year in the 1950s to around 1200 in the 2000s. This doubling is likely not related to meteorological causes alone. To account for this increase a simple least squares linear regression was fitted to the annual number of tornado reports. A “big tornado day” is a single day when numerous tornadoes and/or many tornadoes exceeding a specified intensity threshold were reported anywhere in the country. By defining a big tornado day without considering the spatial distribution of the tornadoes, a big tornado day differs from previous definitions of outbreaks. To address the increase in the number of reports, the number of reports is compared to the expected number of reports in a year based on linear regression. In addition, the F1 and greater Fujita-scale record was used in determining a big tornado day because the F1 and greater series was more stationary over time as opposed to the F2 and greater series. Thresholds were applied to the data to determine the number and intensities of the tornadoes needed to be considered a big tornado day. Possible threshold values included fractions of the annual expected value associated with the linear regression and fixed numbers for the intensity criterion. Threshold values of 1.5% of the expected annual total number of tornadoes and/or at least 8 F1 and greater tornadoes identified about 18.1 big tornado days per year. Higher thresholds such as 2.5% and/or at least 15 F1 and greater tornadoes showed similar characteristics, yet identified approximately 6.2 big tornado days per year. Finally, probability distribution curves generated using kernel density estimation revealed that big tornado days were more likely to occur slightly earlier in the year and have a narrower distribution than any given tornado day.

Full access
Ariel E. Cohen
,
Steven M. Cavallo
,
Michael C. Coniglio
, and
Harold E. Brooks

Abstract

The representation of turbulent mixing within the lower troposphere is needed to accurately portray the vertical thermodynamic and kinematic profiles of the atmosphere in mesoscale model forecasts. For mesoscale models, turbulence is mostly a subgrid-scale process, but its presence in the planetary boundary layer (PBL) can directly modulate a simulation’s depiction of mass fields relevant for forecast problems. The primary goal of this work is to review the various parameterization schemes that the Weather Research and Forecasting Model employs in its depiction of turbulent mixing (PBL schemes) in general, and is followed by an application to a severe weather environment. Each scheme represents mixing on a local and/or nonlocal basis. Local schemes only consider immediately adjacent vertical levels in the model, whereas nonlocal schemes can consider a deeper layer covering multiple levels in representing the effects of vertical mixing through the PBL. As an application, a pair of cold season severe weather events that occurred in the southeastern United States are examined. Such cases highlight the ambiguities of classically defined PBL schemes in a cold season severe weather environment, though characteristics of the PBL schemes are apparent in this case. Low-level lapse rates and storm-relative helicity are typically steeper and slightly smaller for nonlocal than local schemes, respectively. Nonlocal mixing is necessary to more accurately forecast the lower-tropospheric lapse rates within the warm sector of these events. While all schemes yield overestimations of mixed-layer convective available potential energy (MLCAPE), nonlocal schemes more strongly overestimate MLCAPE than do local schemes.

Full access
Ariel E. Cohen
,
Steven M. Cavallo
,
Michael C. Coniglio
,
Harold E. Brooks
, and
Israel L. Jirak

Abstract

Southeast U.S. cold season severe weather events can be difficult to predict because of the marginality of the supporting thermodynamic instability in this regime. The sensitivity of this environment to prognoses of instability encourages additional research on ways in which mesoscale models represent turbulent processes within the lower atmosphere that directly influence thermodynamic profiles and forecasts of instability. This work summarizes characteristics of the southeast U.S. cold season severe weather environment and planetary boundary layer (PBL) parameterization schemes used in mesoscale modeling and proceeds with a focused investigation of the performance of nine different representations of the PBL in this environment by comparing simulated thermodynamic and kinematic profiles to observationally influenced ones. It is demonstrated that simultaneous representation of both nonlocal and local mixing in the Asymmetric Convective Model, version 2 (ACM2), scheme has the lowest overall errors for the southeast U.S. cold season tornado regime. For storm-relative helicity, strictly nonlocal schemes provide the largest overall differences from observationally influenced datasets (underforecast). Meanwhile, strictly local schemes yield the most extreme differences from these observationally influenced datasets (underforecast) in a mean sense for the low-level lapse rate and depth of the PBL, on average. A hybrid local–nonlocal scheme is found to mitigate these mean difference extremes. These findings are traced to a tendency for local schemes to incompletely mix the PBL while nonlocal schemes overmix the PBL, whereas the hybrid schemes represent more intermediate mixing in a regime where vertical shear enhances mixing and limited instability suppresses mixing.

Full access
Brooks E. Martner
,
Robert M. Rauber
,
Roy M. Rasmussen
,
Erwin T. Prater
, and
Mohan K. Ramamurthy

A winter storm that crossed the continental United States in mid-February 1990 produced hazardous weather across a vast area of the nation. A wide range of severe weather was reported, including heavy snowfall; freezing rain and drizzle; thunderstorms with destructive winds, lightning, large hail, and tornadoes; prolonged heavy rain with subsequent flooding; frost damage to citrus orchards; and sustained destructive winds not associated with thunderstorms. Low-end preliminary estimates of impacts included 9 deaths, 27 injuries, and $120 million of property damage. At least 35 states and southeastern Canada were adversely affected. The storm occurred during the field operations of four independent atmospheric research projects that obtained special, detailed observations of it from the Rocky Mountains to the eastern Great Lakes.

Full access
Anders E. Carlson
,
Peter U. Clark
,
Grant M. Raisbeck
, and
Edward J. Brook

Abstract

Retreat of the Laurentide Ice Sheet (LIS) following the Last Glacial Maximum 21 000 yr BP affected regional to global climate and accounted for the largest proportion of sea level rise. Although the late Pleistocene LIS retreat chronology is relatively well constrained, its Holocene chronology remains poorly dated, limiting our understanding of its role in Holocene climate change and sea level rise. Here new 10Be cosmogenic exposure ages on glacially deposited boulders are used to date the final disappearance of the Labrador sector of the LIS (LS-LIS). These data suggest that following the deglaciation of the southeastern Hudson Bay coastline at 8.0 ± 0.2 cal ka BP, the southwestern margin of the LS-LIS rapidly retreated ∼600 km in 140 yr and most likely in ∼600 yr at a rate of ∼900 m yr−1, with final deglaciation by 6.8 ± 0.2 10Be ka. The disappearance of the LS-LIS ∼6.8 10Be ka and attendant reduction in freshwater runoff may have induced the formation of Labrador Deep Seawater, while the loss of the high albedo surface may have initiated the Holocene Thermal Maximum in eastern Canada and southern Greenland. Moreover, the rapid melting just prior to ∼6.8 10Be ka indicates that the remnant LIS may be the primary source of a postulated rapid rise in global sea level of ∼5 m that occurred sometime between 7.6 and 6.5 cal ka BP.

Full access
David J. Stensrud
,
Harold E. Brooks
,
Jun Du
,
M. Steven Tracton
, and
Eric Rogers
Full access
David J. Stensrud
,
Harold E. Brooks
,
Jun Du
,
M. Steven Tracton
, and
Eric Rogers

Abstract

Numerical forecasts from a pilot program on short-range ensemble forecasting at the National Centers for Environmental Prediction are examined. The ensemble consists of 10 forecasts made using the 80-km Eta Model and 5 forecasts from the regional spectral model. Results indicate that the accuracy of the ensemble mean is comparable to that from the 29-km Meso Eta Model for both mandatory level data and the 36-h forecast cyclone position. Calculations of spread indicate that at 36 and 48 h the spread from initial conditions created using the breeding of growing modes technique is larger than the spread from initial conditions created using different analyses. However, the accuracy of the forecast cyclone position from these two initialization techniques is nearly identical. Results further indicate that using two different numerical models assists in increasing the ensemble spread significantly.

There is little correlation between the spread in the ensemble members and the accuracy of the ensemble mean for the prediction of cyclone location. Since information on forecast uncertainty is needed in many applications, and is one of the reasons to use an ensemble approach, the lack of a correlation between spread and forecast uncertainty presents a challenge to the production of short-range ensemble forecasts.

Even though the ensemble dispersion is not found to be an indication of forecast uncertainty, significant spread can occur within the forecasts over a relatively short time period. Examples are shown to illustrate how small uncertainties in the model initial conditions can lead to large differences in numerical forecasts from an identical numerical model.

Full access