Search Results
You are looking at 11 - 20 of 22 items for
- Author or Editor: M. Rajeevan x
- Refine by Access: All Content x
Abstract
Drought, a prolonged natural event, profoundly impacts water resources and societies, particularly in agriculturally dependent nations like India. This study focuses on subseasonal droughts during the Indian summer monsoon season using standardized precipitation index (SPI). Analyzing hindcasts from the National Centre for Medium Range Weather Forecasting (NCMRWF) Extended Range Prediction (NERP) system spanning 1993–2015, we assess NERP’s strengths and limitations. NERP replicates climatic patterns well but overestimates rainfall in the Himalayan foothills and the Indo-Gangetic Plain while underestimating it in the core monsoon zone and western coastline. Nonetheless, the NERP system demonstrates its ability to predict subseasonal drought conditions across India. Our research explores the model’s dynamics, emphasizing tropical and extratropical influences. We evaluate the impact of monsoon intraseasonal oscillation (MSIO) and Madden–Julian oscillation (MJO) on drought onset and persistence, noting model performance and discrepancies. While the model consistently identifies MSIO locations, variations in phase propagation affect drought severity in India. Remarkably, NERP excels in predicting MJO phases during droughts. The study underscores the robust response in the near-equatorial Indian Ocean, a crucial factor in subseasonal drought development. Furthermore, we explored upper-level dynamic interactions, demonstrating NERP’s ability to capture subseasonal drought dynamics. For example, unusual westerly winds weaken the tropical easterly jet, and a cyclonic anomaly transports cold air at midlevels and upper levels. These interactions reduce thermal contrast, weakening monsoon flow and favoring drought conditions. Hence, the NERP system demonstrates its skill in assessing prevailing drought conditions and associated teleconnection patterns, enhancing our understanding of subseasonal droughts and their complex triggers.
Abstract
Drought, a prolonged natural event, profoundly impacts water resources and societies, particularly in agriculturally dependent nations like India. This study focuses on subseasonal droughts during the Indian summer monsoon season using standardized precipitation index (SPI). Analyzing hindcasts from the National Centre for Medium Range Weather Forecasting (NCMRWF) Extended Range Prediction (NERP) system spanning 1993–2015, we assess NERP’s strengths and limitations. NERP replicates climatic patterns well but overestimates rainfall in the Himalayan foothills and the Indo-Gangetic Plain while underestimating it in the core monsoon zone and western coastline. Nonetheless, the NERP system demonstrates its ability to predict subseasonal drought conditions across India. Our research explores the model’s dynamics, emphasizing tropical and extratropical influences. We evaluate the impact of monsoon intraseasonal oscillation (MSIO) and Madden–Julian oscillation (MJO) on drought onset and persistence, noting model performance and discrepancies. While the model consistently identifies MSIO locations, variations in phase propagation affect drought severity in India. Remarkably, NERP excels in predicting MJO phases during droughts. The study underscores the robust response in the near-equatorial Indian Ocean, a crucial factor in subseasonal drought development. Furthermore, we explored upper-level dynamic interactions, demonstrating NERP’s ability to capture subseasonal drought dynamics. For example, unusual westerly winds weaken the tropical easterly jet, and a cyclonic anomaly transports cold air at midlevels and upper levels. These interactions reduce thermal contrast, weakening monsoon flow and favoring drought conditions. Hence, the NERP system demonstrates its skill in assessing prevailing drought conditions and associated teleconnection patterns, enhancing our understanding of subseasonal droughts and their complex triggers.
Abstract
The evaluation and usefulness of lightning prediction for the Indian subcontinent are demonstrated. Implementation of the lightning parameterizations based on storm parameters, in the Weather Research and Forecasting (WRF) Model, with different microphysics schemes are carried out. With the availability of observed lightning measurements over Maharashtra from the lightning detection network (LDN), lightning cases have been identified during the pre-monsoon season of 2016–18. Lightning parameterization based on cloud top height defined by a reflectivity threshold factor of 20 dBZ is chosen. Initial analysis is carried out for 16 lightning events with four microphysical schemes for the usefulness in lightning prediction. Objective analysis is carried out and quantitative model performance (skill scores) is assessed based on observed data. The skills are evaluated for 10- and 50-km2 boxes from the 1-km domain. There is good POD of 0.86, 0.82, 0.85, and 0.84, and false alarm ratio (FAR) of 0.28, 0.25, 0.29, and 0.26 from WSM6, Thompson, Morrison, and WDM6, respectively. There is an overestimation in lightning flash with a spatial and temporal shift. The fractional skill score is evaluated as a function of spatial scale with neighborhoods from 25 to 250 km. These high skill scores and high degree of correlation between observations and model simulation gives us confidence to use the system for real-time operational forecast over India. The skill for 2019 and 2020 pre-monsoon are calculated to address the predictability of operational lightning prediction over India.
Significance Statement
A high-resolution model, namely, the Weather Research and Forecasting (WRF) Model, with multiple microphysics parameterization schemes and lightning parameterization is used here. The objective analysis is carried out for the lightning cases over India and the quantitative performance is assessed. The results highlight that there is fairly good probability of detection (POD) of 0.86, 0.82, 0.85, and 0.84 and false alarm ratio (FAR) of 0.28, 0.25, 0.29, and 0.26 from four different microphysical schemes (WSM6, Thompson, Morrison, and WDM6, respectively). These high skill scores and high degree of correlation between observations and model simulation gives us confidence to use the system for real-time operational forecast. The validation of lightning forecast system deployed over India for five pre-monsoon months in real time is carried out, which gives POD of 0.90, FAR of 0.64, hit rate of 0.57, and POFD of 0.50 for the whole Indian region.
Abstract
The evaluation and usefulness of lightning prediction for the Indian subcontinent are demonstrated. Implementation of the lightning parameterizations based on storm parameters, in the Weather Research and Forecasting (WRF) Model, with different microphysics schemes are carried out. With the availability of observed lightning measurements over Maharashtra from the lightning detection network (LDN), lightning cases have been identified during the pre-monsoon season of 2016–18. Lightning parameterization based on cloud top height defined by a reflectivity threshold factor of 20 dBZ is chosen. Initial analysis is carried out for 16 lightning events with four microphysical schemes for the usefulness in lightning prediction. Objective analysis is carried out and quantitative model performance (skill scores) is assessed based on observed data. The skills are evaluated for 10- and 50-km2 boxes from the 1-km domain. There is good POD of 0.86, 0.82, 0.85, and 0.84, and false alarm ratio (FAR) of 0.28, 0.25, 0.29, and 0.26 from WSM6, Thompson, Morrison, and WDM6, respectively. There is an overestimation in lightning flash with a spatial and temporal shift. The fractional skill score is evaluated as a function of spatial scale with neighborhoods from 25 to 250 km. These high skill scores and high degree of correlation between observations and model simulation gives us confidence to use the system for real-time operational forecast over India. The skill for 2019 and 2020 pre-monsoon are calculated to address the predictability of operational lightning prediction over India.
Significance Statement
A high-resolution model, namely, the Weather Research and Forecasting (WRF) Model, with multiple microphysics parameterization schemes and lightning parameterization is used here. The objective analysis is carried out for the lightning cases over India and the quantitative performance is assessed. The results highlight that there is fairly good probability of detection (POD) of 0.86, 0.82, 0.85, and 0.84 and false alarm ratio (FAR) of 0.28, 0.25, 0.29, and 0.26 from four different microphysical schemes (WSM6, Thompson, Morrison, and WDM6, respectively). These high skill scores and high degree of correlation between observations and model simulation gives us confidence to use the system for real-time operational forecast. The validation of lightning forecast system deployed over India for five pre-monsoon months in real time is carried out, which gives POD of 0.90, FAR of 0.64, hit rate of 0.57, and POFD of 0.50 for the whole Indian region.
Abstract
A Winter Fog Experiment (WiFEX) was conducted to study the genesis of fog formation between winters 2016–17 and 2017–18 at Indira Gandhi International Airport (IGIA), Delhi, India. To support the WiFEX field campaign, the Weather Research and Forecasting (WRF) Model was used to produce real-time forecasts at 2-km horizontal grid spacing. This paper summarizes the performance of the model forecasts for 43 very dense fog episodes (visibility < 200 m) and preliminary evaluation of the model against the observations. Similarly, near-surface liquid water content (LWC) from models and continuous visibility observations are used as a metric for model evaluation. Results show that the skill score is relatively promising for the hit rate with a value of 0.78, whereas the false alarm rate (0.19) and missing rate (0.32) are quite low. This indicates that the model has reasonable predictive accuracy, and the performance of the real-time forecast is better for both dense fog events and no-fog events. For success cases, the model accurately captured the near-surface meteorological conditions, particularly the low-level moisture, wind fields, and temperature inversion. In contrast, for failed cases, the WRF Model shows large error in near-surface relative humidity and temperature compared to the observations, although it captures temperature inversions reasonably well. Our results also suggest that the model is able to capture the variability in fog onset for consecutive fog events. Errors in near-surface variables during failed cases are found to be affected by the errors in the initial conditions taken from the Indian Institute of Tropical Meteorology Global Forecasting System (IITM-GFS) spectral model forecast. Further evaluation of the operational forecasts for dense fog cases indicates that the error in predicting fog onset stage is relatively large (mean error of 4 h) compared to the dissipation stage.
Abstract
A Winter Fog Experiment (WiFEX) was conducted to study the genesis of fog formation between winters 2016–17 and 2017–18 at Indira Gandhi International Airport (IGIA), Delhi, India. To support the WiFEX field campaign, the Weather Research and Forecasting (WRF) Model was used to produce real-time forecasts at 2-km horizontal grid spacing. This paper summarizes the performance of the model forecasts for 43 very dense fog episodes (visibility < 200 m) and preliminary evaluation of the model against the observations. Similarly, near-surface liquid water content (LWC) from models and continuous visibility observations are used as a metric for model evaluation. Results show that the skill score is relatively promising for the hit rate with a value of 0.78, whereas the false alarm rate (0.19) and missing rate (0.32) are quite low. This indicates that the model has reasonable predictive accuracy, and the performance of the real-time forecast is better for both dense fog events and no-fog events. For success cases, the model accurately captured the near-surface meteorological conditions, particularly the low-level moisture, wind fields, and temperature inversion. In contrast, for failed cases, the WRF Model shows large error in near-surface relative humidity and temperature compared to the observations, although it captures temperature inversions reasonably well. Our results also suggest that the model is able to capture the variability in fog onset for consecutive fog events. Errors in near-surface variables during failed cases are found to be affected by the errors in the initial conditions taken from the Indian Institute of Tropical Meteorology Global Forecasting System (IITM-GFS) spectral model forecast. Further evaluation of the operational forecasts for dense fog cases indicates that the error in predicting fog onset stage is relatively large (mean error of 4 h) compared to the dissipation stage.
Abstract
In spite of the summer monsoon’s importance in determining the life and economy of an agriculture-dependent country like India, committed efforts toward improving its prediction and simulation have been limited. Hence, a focused mission mode program Monsoon Mission (MM) was founded in 2012 to spur progress in this direction. This article explains the efforts made by the Earth System Science Organization (ESSO), Ministry of Earth Sciences (MoES), Government of India, in implementing MM to develop a dynamical prediction framework to improve monsoon prediction. Climate Forecast System, version 2 (CFSv2), and the Met Office Unified Model (UM) were chosen as the base models. The efforts in this program have resulted in 1) unparalleled skill of 0.63 for seasonal prediction of the Indian monsoon (for the period 1981–2010) in a high-resolution (∼38 km) seasonal prediction system, relative to present-generation seasonal prediction models; 2) extended-range predictions by a CFS-based grand multimodel ensemble (MME) prediction system; and 3) a gain of 2-day lead time from very high-resolution (12.5 km) Global Forecast System (GFS)-based short-range predictions up to 10 days. These prediction skills are on par with other global leading weather and climate centers, and are better in some areas. Several developmental activities like coupled data assimilation, changes in convective parameterization, cloud microphysics schemes, and parameterization of land surface processes (including snow and sea ice) led to the improvements such as reducing the strong model biases in the Indian summer monsoon simulation and elsewhere in the tropics.
Abstract
In spite of the summer monsoon’s importance in determining the life and economy of an agriculture-dependent country like India, committed efforts toward improving its prediction and simulation have been limited. Hence, a focused mission mode program Monsoon Mission (MM) was founded in 2012 to spur progress in this direction. This article explains the efforts made by the Earth System Science Organization (ESSO), Ministry of Earth Sciences (MoES), Government of India, in implementing MM to develop a dynamical prediction framework to improve monsoon prediction. Climate Forecast System, version 2 (CFSv2), and the Met Office Unified Model (UM) were chosen as the base models. The efforts in this program have resulted in 1) unparalleled skill of 0.63 for seasonal prediction of the Indian monsoon (for the period 1981–2010) in a high-resolution (∼38 km) seasonal prediction system, relative to present-generation seasonal prediction models; 2) extended-range predictions by a CFS-based grand multimodel ensemble (MME) prediction system; and 3) a gain of 2-day lead time from very high-resolution (12.5 km) Global Forecast System (GFS)-based short-range predictions up to 10 days. These prediction skills are on par with other global leading weather and climate centers, and are better in some areas. Several developmental activities like coupled data assimilation, changes in convective parameterization, cloud microphysics schemes, and parameterization of land surface processes (including snow and sea ice) led to the improvements such as reducing the strong model biases in the Indian summer monsoon simulation and elsewhere in the tropics.
Abstract
The presence of persistent heavy fog in northern India during winter creates hazardous situations for transportation systems and disrupts the lives of about 400 million people. The meteorological factors responsible for its genesis and predictability are not yet completely understood in this region. Given its high potential for socioeconomic impact, there is a pressing need for extensive research that understands the inherently complex nature of the phenomena through field observations and modeling exercises. WiFEX is a first-of-its-kind multi-institutional initiative dealing with intensive ground-based measurement campaigns for developing a suitable fog forecasting capability under the aegis of the smart cities mission of India. Measuring campaigns were conducted during the 2015–20 winters at the Indira Gandhi International Airport, New Delhi, covering more than 90 dense fog events. The field experiments involved extensive suites of in situ instruments and gathered simultaneous observations of micrometeorological conditions, radiative fluxes, turbulence, droplet/aerosol microphysics, aerosol optical properties, fog water chemistry, and vertical thermodynamical structure to describe the environmental stability in which fog develops. An operational modeling framework, the WRF Model, was set up to provide fog predictions during the measurement campaign. These field observations helped to interpret the strengths and deficiencies in the numerical modeling framework. Four scientific objectives were pursued: (i) the life cycle of optically thin and thick fog, (ii) microphysical properties in the polluted boundary layer, (iii) fog water chemistry, gas–aerosol partitioning during the fog life cycle, and (iv) numerical prediction of fog. This paper presents an overview of WiFEX and a synthesis of selected observational and modeling analyses/findings related to the abovementioned scientific topics.
Abstract
The presence of persistent heavy fog in northern India during winter creates hazardous situations for transportation systems and disrupts the lives of about 400 million people. The meteorological factors responsible for its genesis and predictability are not yet completely understood in this region. Given its high potential for socioeconomic impact, there is a pressing need for extensive research that understands the inherently complex nature of the phenomena through field observations and modeling exercises. WiFEX is a first-of-its-kind multi-institutional initiative dealing with intensive ground-based measurement campaigns for developing a suitable fog forecasting capability under the aegis of the smart cities mission of India. Measuring campaigns were conducted during the 2015–20 winters at the Indira Gandhi International Airport, New Delhi, covering more than 90 dense fog events. The field experiments involved extensive suites of in situ instruments and gathered simultaneous observations of micrometeorological conditions, radiative fluxes, turbulence, droplet/aerosol microphysics, aerosol optical properties, fog water chemistry, and vertical thermodynamical structure to describe the environmental stability in which fog develops. An operational modeling framework, the WRF Model, was set up to provide fog predictions during the measurement campaign. These field observations helped to interpret the strengths and deficiencies in the numerical modeling framework. Four scientific objectives were pursued: (i) the life cycle of optically thin and thick fog, (ii) microphysical properties in the polluted boundary layer, (iii) fog water chemistry, gas–aerosol partitioning during the fog life cycle, and (iv) numerical prediction of fog. This paper presents an overview of WiFEX and a synthesis of selected observational and modeling analyses/findings related to the abovementioned scientific topics.
Abstract
During August 2018 and 2019 the southern state of India, Kerala, received unprecedented heavy rainfall, which led to widespread flooding. We aim to characterize the convective nature of these events and the large-scale atmospheric forcing, while exploring their predictability by three state-of-the-art global prediction systems: the National Centers for Environmental Prediction (NCEP)-based India Meteorological Department (IMD) operational Global Forecast System (GFS), the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS), and the Unified Model–based NCUM being run at the National Centre for Medium Range Weather Forecasting (NCMRWF). Satellite, radar, and lightning observations suggest that these rain events were dominated by cumulus congestus and shallow convection with strong zonal flow leading to orographically enhanced rainfall over the Ghats mountain range; sporadic deep convection was also present during the 2019 event. A moisture budget analyses using the fifth major global reanalysis produced by ECMWF (ERA5) and forecast output revealed significantly increased moisture convergence below 800 hPa during the main rain events compared to August climatology. The total column-integrated precipitable water tendency, however, is found to be small throughout the month of August, indicating a balance between moisture convergence and drying by precipitation. By applying a Rossby wave filter to the rainfall anomalies it is shown that the large-scale moisture convergence is associated with westward-propagating barotropic Rossby waves over Kerala, leading to increased predictability of these events, especially for 2019. Evaluation of the deterministic and ensemble rainfall predictions revealed systematic rainfall differences over the Ghats mountains and the coastline. The ensemble predictions were more skillful than the deterministic forecasts, as they were able to predict rainfall anomalies (greater than three standard deviations from climatology) beyond day 5 for August 2019 and up to day 3 for 2018.
Abstract
During August 2018 and 2019 the southern state of India, Kerala, received unprecedented heavy rainfall, which led to widespread flooding. We aim to characterize the convective nature of these events and the large-scale atmospheric forcing, while exploring their predictability by three state-of-the-art global prediction systems: the National Centers for Environmental Prediction (NCEP)-based India Meteorological Department (IMD) operational Global Forecast System (GFS), the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS), and the Unified Model–based NCUM being run at the National Centre for Medium Range Weather Forecasting (NCMRWF). Satellite, radar, and lightning observations suggest that these rain events were dominated by cumulus congestus and shallow convection with strong zonal flow leading to orographically enhanced rainfall over the Ghats mountain range; sporadic deep convection was also present during the 2019 event. A moisture budget analyses using the fifth major global reanalysis produced by ECMWF (ERA5) and forecast output revealed significantly increased moisture convergence below 800 hPa during the main rain events compared to August climatology. The total column-integrated precipitable water tendency, however, is found to be small throughout the month of August, indicating a balance between moisture convergence and drying by precipitation. By applying a Rossby wave filter to the rainfall anomalies it is shown that the large-scale moisture convergence is associated with westward-propagating barotropic Rossby waves over Kerala, leading to increased predictability of these events, especially for 2019. Evaluation of the deterministic and ensemble rainfall predictions revealed systematic rainfall differences over the Ghats mountains and the coastline. The ensemble predictions were more skillful than the deterministic forecasts, as they were able to predict rainfall anomalies (greater than three standard deviations from climatology) beyond day 5 for August 2019 and up to day 3 for 2018.
Abstract
The demand for effective methods to augment precipitation over arid regions of India has been increasing over the past several decades as the changing climate brings warmer average temperatures. In the fourth phase of the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX IV), a scientific investigation was conducted over a rain-shadow region of the Western Ghats mountains in India. The primary objective was to investigate the efficacy of hygroscopic seeding in convective clouds and to develop a cloud seeding protocol. CAIPEEX IV followed the World Meteorological Organization (WMO) recommendations in a peer-reviewed report with physical, statistical, and numerical investigations. The initial results of the campaign in the monsoon period of 2018 and 2019 with two instrumented aircraft, a ground-based dual-polarization C-band radar, a network of rain gauges, radiosondes, and surface aerosol measurements are reported here. The hygroscopic seeding material was detected in cloud droplets and key cloud microphysical processes in the seeding hypothesis were tracked. The formidable challenges of assessing seeding impacts in convective clouds and the results from 150 seed and 122 no-seed samples of randomized experiments are illustrated. Over 5,000 cloud passes from the airborne campaign provided details about the convective cloud properties as the key indicators for a seeding strategy and the evaluation protocol. The experimental results suggest that cloud seeding can be approached scientifically to reduce uncertainty. The results from this study should interest the scientific community and policymakers concerned with climate change’s impact on precipitation and how to mitigate rainfall deficiencies.
Abstract
The demand for effective methods to augment precipitation over arid regions of India has been increasing over the past several decades as the changing climate brings warmer average temperatures. In the fourth phase of the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX IV), a scientific investigation was conducted over a rain-shadow region of the Western Ghats mountains in India. The primary objective was to investigate the efficacy of hygroscopic seeding in convective clouds and to develop a cloud seeding protocol. CAIPEEX IV followed the World Meteorological Organization (WMO) recommendations in a peer-reviewed report with physical, statistical, and numerical investigations. The initial results of the campaign in the monsoon period of 2018 and 2019 with two instrumented aircraft, a ground-based dual-polarization C-band radar, a network of rain gauges, radiosondes, and surface aerosol measurements are reported here. The hygroscopic seeding material was detected in cloud droplets and key cloud microphysical processes in the seeding hypothesis were tracked. The formidable challenges of assessing seeding impacts in convective clouds and the results from 150 seed and 122 no-seed samples of randomized experiments are illustrated. Over 5,000 cloud passes from the airborne campaign provided details about the convective cloud properties as the key indicators for a seeding strategy and the evaluation protocol. The experimental results suggest that cloud seeding can be approached scientifically to reduce uncertainty. The results from this study should interest the scientific community and policymakers concerned with climate change’s impact on precipitation and how to mitigate rainfall deficiencies.