Search Results

You are looking at 11 - 20 of 35 items for

  • Author or Editor: Min Chen x
  • Refine by Access: All Content x
Clear All Modify Search
Tzu-Han Hsu
,
Wei-Ting Chen
,
Chien-Ming Wu
, and
Min-Ken Hsieh

Abstract

This study quantifies the potential effect of the lee vortex on the fine particulate matter (PM2.5) pollution deterioration under the complex topography in Taiwan using observational data. We select the lee-vortex days that favor the development of the lee vortices in northwestern Taiwan under the southeasterly synoptic winds. We then define the enhancement index that discerns the areas with the high occurrence frequencies of the PM2.5 enhancement under the flow regime relative to the seasonal background concentrations. Under the lee-vortex days, the center of western Taiwan exhibits enhancement indices higher than 0.65. In addition, during the consecutive lee-vortex days, the index characterizes a northward shift in the PM2.5-enhanced areas under the subtle transition of the background wind directions. The areas with indices higher than 0.65 expand on the second day in northwestern Taiwan; the number of stations exhibiting indices higher than 0.8 increases by threefold from the first to the second day. The idealized numerical simulations using the Taiwan vector vorticity equation cloud-resolving model (TaiwanVVM) explicitly resolve the structures of leeside circulations and the associated pollutant transport, and their evolutions are highly sensitive to the background winds.

Significance Statement

Our study investigates the challenging question of local circulation patterns affected by mountain orography and the associated pollutant transport. We analyzed long-term balloon sounding and ground station observations to select the weather regime favoring the formation of lee vortices on Taiwan island. We then quantified the areas with a frequent enhancement of particulate pollutants. The long-term trend of the lee-vortex days exhibited a significant increase in the past decades. The pollution enhancement areas are highly consistent with the regions dominated by leeside local circulation. Together with the idealized high-resolution simulations, we identified that the detailed evolution of the lee vortices is highly sensitive to the subtle changes in background wind direction and hence the redistribution of local pollution.

Free access
Hua Zheng
,
Xiao-Hua Zhu
,
Min Wang
,
Juntian Chen
,
Feng Nan
, and
Fei Yu

Abstract

Abyssal vorticity balance in the northeast South China Sea was assessed for over a year based on observations from 28 current- and pressure-recording inverted echo sounders distributed west of the Luzon Strait. The regional first-order balance was dominated by the planetary vorticity flux and bottom pressure torque, which reflect the external and internal dynamics of abyssal circulation. Vertical motion considerably contributed to the planetary vorticity flux, whereas the contribution of horizontal motion was negligible. Positive and negative planetary vorticity fluxes dominate the areas along the eastern and western boundaries, indicating upward and downward vertical transport, respectively. The opposite planetary vorticity fluxes in the different areas were accompanied by different current patterns; regional anticyclonic and cyclonic characteristics appeared near the western and eastern boundaries, respectively, owing to the deep topography as the abyssal current followed the boundary. The planetary vorticity flux near the eastern boundary was substantial in spring and autumn; in contrast, along the western boundary it was enhanced only in spring. Deep eddies played important roles in planetary vorticity flux and regional vorticity balance. The results of this study reveal the formation dynamics of abyssal circulation in the South China Sea as well as its spatiotemporal distributions, providing a more detailed description of abyssal circulation.

Significance Statement

The deep South China Sea (SCS) is a nearly enclosed basin characterized by cyclonic abyssal circulation. Based on the observations from 28 current- and pressure-recording inverted echo sounders distributed west of the Luzon Strait, the vorticity balance in the deep SCS was clarified. The planetary vorticity flux and bottom pressure torque maintain a first-order balance of vorticity, which acts as the external and internal dynamics of the abyssal circulation. The study describes the temporal variability and spatial distribution of vorticity terms in the deep ocean west of the Luzon Strait, which may contribute to a more detailed understanding of abyssal circulation formation and its evolution.

Restricted access
Arshdeep Singh
,
Sanjiv Kumar
,
Liang Chen
,
Montasir Maruf
,
Peter Lawrence
, and
Min-Hui Lo

Abstract

This study examines the effects of land use (LU) change on regional climate, comparing historical and future scenarios using seven climate models from Coupled Model Intercomparison Phase 6 – Land Use Model Intercomparison Project experiments. LU changes are evaluated relative to land use conditions during the pre-industrial climate. Using the Community Earth System Model version 2 Large Ensemble (CESM2-LE) experiment, we distinguish LU impacts from natural climate variability. We assess LU impact locally by comparing the impacts of climate change in neighboring areas with and without LU changes. Further, we conduct CESM2 experiments with and without LU changes to investigate LU-related climate processes.

A multi-model analysis reveals a shift in LU-induced climate impacts, from cooling in the past to warming in the future climate across mid-latitude regions. For instance, in North America, LU's effect on air temperature changes from −0.24±0.18°C historically to 0.62±0.27°C in the future during the boreal summer. The CESM2-LE shows a decrease in LU-driven cooling from −0.92±0.09°C in the past to −0.09±0.09°C in future boreal summers in North America.

A hydroclimatic perspective linking LU and climate feedback indicates LU changes causing soil moisture drying in the mid-latitude regions. This contrasts with hydrology-only views showing wetter soil conditions due to LU changes. Furthermore, global warming causes widespread drying of soil moisture across various regions. Mid-latitude regions shift from a historically wet regime to a water limited transitional regime in the future climate. This results in reduced evapotranspiration, weakening LU-driven cooling in future climate projections. A strong linear relationship exists between soil moisture and evaporative fraction in mid-latitudes.

Restricted access
Yi Peng
,
Yi-Peng Guo
,
Jiuwei Zhao
,
Zhe-Min Tan
,
Xu Chen
, and
Xiangbo Feng

Abstract

Current coupled climate models contain large biases in simulating tropical cyclogenesis, reducing the confidence in tropical cyclone (TC) projection. In this study, we investigated the influence of sea surface temperature (SST) biases on TC genesis in the Coupled Model Intercomparison Project phase 6 simulations from 1979 to 2014. Positive TC genesis biases were found over the tropical central North Pacific (CNP) in most of climate models, including the high-resolution models. Compared to coupled models, TC genesis density (TCGD) simulations over CNP in uncoupled models forced by observational SST improved obviously. A warm SST bias over the tropical CNP in the coupled models is the main cause of TC genesis biases. The SST bias–induced diabatic heating leads to an anomalous Gill-type atmospheric circulation response, which contributes to a series of favorable environmental conditions for TC formation over the CNP. Numerical experiments were also performed with HiRAM to demonstrate the influence of SST biases on the TCGD simulation, further confirming our conclusion. The current results highlight the importance of improving TC simulation in state-of-the-art climate models by reducing SST simulation bias.

Restricted access
Yaling Liu
,
Dongdong Chen
,
Soukayna Mouatadid
,
Xiaoliang Lu
,
Min Chen
,
Yu Cheng
,
Zhenghui Xie
,
Binghao Jia
,
Huan Wu
, and
Pierre Gentine

Abstract

Soil moisture (SM) links the water and energy cycles over the land–atmosphere interface and largely determines ecosystem functionality, positioning it as an essential player in the Earth system. Despite its importance, accurate estimation of large-scale SM remains a challenge. Here we leverage the strength of neural network (NN) and fidelity of long-term measurements to develop a daily multilayer cropland SM dataset for China from 1981 to 2013, implemented for a range of different cropping patterns. The training and testing of the NN for the five soil layers (0–50 cm, 10-cm depth each) yield R 2 values of 0.65–0.70 and 0.64–0.69, respectively. Our analysis reveals that precipitation and soil properties are the two dominant factors determining SM, but cropping pattern is also crucial. In addition, our simulations of alternative cropping patterns indicate that winter wheat followed by fallow will largely alleviate the SM depletion in most parts of China. On the other hand, cropping patterns of fallow in the winter followed by maize/soybean seem to further aggravate SM decline in the Huang-Huai-Hai region and southwestern China, relative to prevalent practices of double cropping. This may be due to their low soil porosity, which results in more soil water drainage, as opposed to the case that winter crop roots help maintain SM. This multilayer cropland SM dataset with granularity of cropping patterns provides an important alternative and is complementary to modeled and satellite-retrieved products.

Full access
Chu-Chun Chen
,
Min-Hui Lo
,
Eun-Soon Im
,
Jin-Yi Yu
,
Yu-Chiao Liang
,
Wei-Ting Chen
,
Iping Tang
,
Chia-Wei Lan
,
Ren-Jie Wu
, and
Rong-You Chien

Abstract

Tropical deforestation can result in substantial changes in local surface energy and water budgets, and thus in atmospheric stability. These effects may in turn yield changes in precipitation. The Maritime Continent (MC) has undergone severe deforestation during the past few decades but it has received less attention than the deforestation in the Amazon and Congo rain forests. In this study, numerical deforestation experiments are conducted with global (i.e., Community Earth System Model) and regional climate models (i.e., Regional Climate Model version 4.6) to investigate precipitation responses to MC deforestation. The results show that the deforestation in the MC region leads to increases in both surface temperature and local precipitation. Atmospheric moisture budget analysis reveals that the enhanced precipitation is associated more with the dynamic component than with the thermodynamic component of the vertical moisture advection term. Further analyses on the vertical profile of moist static energy indicate that the atmospheric instability over the deforested areas is increased as a result of anomalous moistening at approximately 800–850 hPa and anomalous warming extending from the surface to 750 hPa. This instability favors ascending air motions, which enhance low-level moisture convergence. Moreover, the vertical motion increases associated with the MC deforestation are comparable to those generated by La Niña events. These findings offer not only mechanisms to explain the local climatic responses to MC deforestation but also insights into the possible reasons for disagreements among climate models in simulating the precipitation responses.

Open access
Boyin Huang
,
Xungang Yin
,
James A. Carton
,
Ligang Chen
,
Garrett Graham
,
Chunying Liu
,
Thomas Smith
, and
Huai-Min Zhang

Abstract

Our study shows that the intercomparison among sea surface temperature (SST) products is influenced by the choice of SST reference, and the interpolation of SST products. The influence of reference SST depends on whether the reference SSTs are averaged to a grid or in pointwise in situ locations, including buoy or Argo observations, and filtered by first-guess or climatology quality control (QC) algorithms. The influence of the interpolation depends on whether SST products are in their original grids or preprocessed into common coarse grids. The impacts of these factors are demonstrated in our assessments of eight widely used SST products (DOISST, MUR25, MGDSST, GAMSSA, OSTIA, GPB, CCI, CMC) relative to buoy observations: (i) when the reference SSTs are averaged onto 0.25° × 0.25° grid boxes, the magnitude of biases is lower in DOISST and MGDSST (<0.03°C), and magnitude of root-mean-square differences (RMSDs) is lower in DOISST (0.38°C) and OSTIA (0.43°C); (ii) when the same reference SSTs are evaluated at pointwise in situ locations, the standard deviations (SDs) are smaller in DOISST (0.38°C) and OSTIA (0.39°C) on 0.25° × 0.25° grids; but the SDs become smaller in OSTIA (0.34°C) and CMC (0.37°C) on products’ original grids, showing the advantage of those high-resolution analyses for resolving finer-scale SSTs; (iii) when a loose QC algorithm is applied to the reference buoy observations, SDs increase; and vice versa; however, the relative performance of products remains the same; and (iv) when the drifting-buoy or Argo observations are used as the reference, the magnitude of RMSDs and SDs become smaller, potentially due to changes in observing intervals. These results suggest that high-resolution SST analyses may take advantage in intercomparisons.

Significance Statement

Intercomparisons of gridded SST products be affected by how the products are compared with in situ observations: whether the products are in coarse (0.25°) or original (0.05°–0.10°) grids, whether the in situ SSTs are in their reported locations or gridded and how they are quality controlled, and whether the biases of satellite SSTs are corrected by localized matchups or large-scale patterns. By taking all these factors into account, our analyses indicate that the NOAA DOISST is among the best SST products for the long period (1981–present) and relatively coarse (0.25°) resolution that it was designed for.

Open access
Lin Chen
,
Gen Li
,
Bo Lu
,
Yanping Li
,
Chujie Gao
,
Shang-Min Long
,
Xinyu Li
, and
Ziqian Wang

Abstract

The spring tripole sea surface temperature (SST) anomalies in North Atlantic are an outstanding regional mode of interannual variability. Based on the observed and reanalyzed datasets during 1979–2019, this study reveals the relationship and linking mechanism between the spring tripole North Atlantic SST anomalies and the central China July precipitation (CCJP). Results show that the tripole SST anomalies, especially the warm SST anomalies in the tropical North Atlantic (TNA) and the subpolar North Atlantic (SNA), often cause surplus CCJP through the tropical and extratropical pathways. On the one hand, the spring TNA SST warming induces a pan-tropical climate response with the cooling in the central equatorial Pacific and the warming in the Indo-western Pacific until the following July through a series of air–sea interactions, helping maintain an anomalous anticyclone over the northwest Pacific and transport more warm humid flows to central China. On the other hand, the spring TNA and SNA SST warming persist into the following July and then emanate a wave train extending from the SNA throughout the Eurasian continent to East Asia, which induces an anomalous anticyclone over North China with its southeast flank transporting more cold air to central China. The warm humid flows from the south against the cold air from the north are conductive to the local ascending motion, favoring the increased CCJP. Our results highlight both the tropical and extratropical teleconnection pathways of the North Atlantic SST anomalies affecting the CCJP. This suggests an important seasonal predictor of the regional climate.

Significance Statement

July is the peak rainy month of central China, with heavy precipitation occurring frequently and often causing serious impacts on the local production and livelihood of millions of people. This study finds that the spring tripole sea surface temperature anomalies in North Atlantic induced by the North Atlantic Oscillation can exert significant impacts on the following July precipitation over central China through both the tropical and extratropical pathways. This improves our understanding of the causes of the surplus July precipitation over central China and has important implications for the seasonal predictability of the regional climate.

Free access
Huimin Chen
,
Bingliang Zhuang
,
Jane Liu
,
Shu Li
,
Tijian Wang
,
Xiaodong Xie
,
Min Xie
,
Mengmeng Li
, and
Ming Zhao

Abstract

Black carbon (BC) aerosol is a significant and short-lived climate forcing factor. Here, the direct effects of BC emissions from India (IDBC) and China (CNBC) are investigated in East Asia during summer using the state-of-the-art regional climate model RegCM4. In summer, IDBC and CNBC account for approximately 30% and 46% of the total BC emissions in Asia, respectively. The total BC column burden from the two countries and corresponding TOA effective radiative forcing are 1.58 mg m−2 and +1.87 W m−2 in East Asia, respectively. The regional air temperature increases over 0.3 K at maximum and precipitation decreases 0.028 mm day−1 on average. Individually, IDBC and CNBC each can bring about rather different effects on regional climate. IDBC can result in a cooling perturbation accompanied by a substantially increased cloud amount and scattering aerosol loading, resulting in a complex response in the regional precipitation, while CNBC can lead to regional warming, and further induce a local flood in northern China or drought in southern China depending on the opposite but significant circulation anomalies. CNBC plays a dominant role in modulating the regional climate over East Asia due to its higher magnitude, wider coverage, and stronger climate feedback. The direct effect of the total BC from both countries is not a linear combination of that of IDBC and CNBC individually, suggesting that the regional climate responses are highly nonlinear to the emission intensity or aerosol loading, which may be greatly related to the influences of the perturbed atmospheric circulations and climate feedback.

Open access
Paul A. Levine
,
James T. Randerson
,
Yang Chen
,
Michael S. Pritchard
,
Min Xu
, and
Forrest M. Hoffman

Abstract

El Niño–Southern Oscillation (ENSO) is an important driver of climate and carbon cycle variability in the Amazon. Sea surface temperature (SST) anomalies in the equatorial Pacific drive teleconnections with temperature directly through changes in atmospheric circulation. These circulation changes also impact precipitation and, consequently, soil moisture, enabling additional indirect effects on temperature through land–atmosphere coupling. To separate the direct influence of ENSO SST anomalies from the indirect effects of soil moisture, a mechanism-denial experiment was performed to decouple their variability in the Energy Exascale Earth System Model (E3SM) forced with observed SSTs from 1982 to 2016. Soil moisture variability was found to amplify and extend the effects of SST forcing on eastern Amazon temperature and carbon fluxes in E3SM. During the wet season, the direct, circulation-driven effect of ENSO SST anomalies dominated temperature and carbon cycle variability throughout the Amazon. During the following dry season, after ENSO SST anomalies had dissipated, soil moisture variability became the dominant driver in the east, explaining 67%–82% of the temperature difference between El Niño and La Niña years, and 85%–91% of the difference in carbon fluxes. These results highlight the need to consider the interdependence between temperature and hydrology when attributing the relative contributions of these factors to interannual variability in the terrestrial carbon cycle. Specifically, when offline models are forced with observations or reanalysis, the contribution of temperature may be overestimated when its own variability is modulated by hydrology via land–atmosphere coupling.

Open access