Search Results

You are looking at 11 - 20 of 33 items for

  • Author or Editor: Nathaniel L. Bindoff x
  • Refine by Access: All Content x
Clear All Modify Search
Annie P. S. Wong
,
Nathaniel L. Bindoff
, and
John A. Church

Abstract

Comparisons of hydrographic conditions in the North and South Pacific Oceans in the 1960s and 1985–94 have been made along five World Ocean Circulation Experiment sections. Below the seasonal mixed layer, statistically significant temporal differences in salinity and temperature have been detected in the water masses that occur in the upper 2000 dbar of the water column. These water mass property differences have been used to estimate the freshwater and heat storage trends in the Pacific over the study period. Along 24°N, 10°N, and 17°S, where either North Pacific Intermediate Water or Antarctic Intermediate Water is present, the upper waters have increased in salinity, while the intermediate and deep waters have decreased in salinity. Although the depth-integrated salinity changes observed along these sections are small, the regional redistribution of freshwater associated with the water mass changes is significant and implies significant redistribution of surface freshwater fluxes over the Pacific. Heat loss has occurred along 47°N and 17°S, but significant warming has occurred along 24° and 10°N, giving the Pacific a net heat gain of 1.79 × 108 J m−2. The resulting steric sea level change for the area in the Pacific between 60°N and 31.5°S over the roughly 20-yr study period is estimated to be a rise of 0.85 mm yr−1, consistent with those in existing literature, but larger than that estimated from numerical models reported in the Intergovernmental Panel on Climate Change Second Assessment Report.

Full access
Stephanie M. Downes
,
Nathaniel L. Bindoff
, and
Stephen R. Rintoul

Abstract

Changes in the temperature, salinity, and subduction of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) between the 1950s and 2090s are diagnosed using the CSIRO Mark version 3.5 (Mk3.5) climate system model Caps under a CO2 forcing that reaches 860 ppm by the year 2100. These Southern Ocean upper-limb water masses ventilate the ocean interior, and changes in their properties have been related to climate change in numerous studies. Over time, the authors follow the low potential vorticity and salinity minimum layers describing SAMW and AAIW and find that the water column in the 2090s shifts to lighter densities by approximately 0.2 kg m−3. The model projects a reduction in the SAMW and AAIW annual mean subduction rates as a result of a combination of a shallower mixed layer, increased potential vorticity at the base of the mixed layer, and a net buoyancy gain. There is little change in the projected total volume of SAMW transported into the ocean interior via the subduction process; however, the authors find a significant decrease in the subduction of AAIW. The authors find overall that increases in the air–sea surface heat and freshwater fluxes mainly control the reduction in the mean loss of the SAMW and AAIW surface buoyancy flux when compared with the effect of changes supplied by Ekman transport because of increased zonal wind stress. In the A2 scenario, there are cooling and freshening on neutral density surfaces less than 27.3 kg m−3 in response to the warming and freshening observed at the ocean’s surface. The model projects deepening of density surfaces due to southward shifts in the outcrop regions and the downward displacement of these surfaces north of 45°S. The volume transport across 32°S is predicted to decrease in all three basins, with southward transport of SAMW and AAIW decreasing by up to 1.2 and 2.0 Sv (1 Sv ≡ 106 m3 s−1), respectively, in the Indian Ocean. These projected reductions in the subduction and transport of mode and intermediate water masses in the CSIRO Mk3.5 model could potentially decrease the absorption and storage of CO2 in the Southern Ocean.

Full access
Ajitha Cyriac
,
Helen E. Phillips
,
Nathaniel L. Bindoff
, and
Kurt Polzin

Abstract

This study presents novel observational estimates of turbulent dissipation and mixing in a standing meander between the Southeast Indian Ridge and the Macquarie Ridge in the Southern Ocean. By applying a finescale parameterization on the temperature, salinity, and velocity profiles collected from Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats in the upper 1600 m, we estimated the intensity and spatial distribution of dissipation rate and diapycnal mixing along the float tracks and investigated the sources. The indirect estimates indicate strong spatial and temporal variability of turbulent mixing varying from O(10−6) to O(10−3) m2 s−1 in the upper 1600 m. Elevated turbulent mixing is mostly associated with the Subantarctic Front (SAF) and mesoscale eddies. In the upper 500 m, enhanced mixing is associated with downward-propagating wind-generated near-inertial waves as well as the interaction between cyclonic eddies and upward-propagating internal waves. In the study region, the local topography does not play a role in turbulent mixing in the upper part of the water column, which has similar values in profiles over rough and smooth topography. However, both remotely generated internal tides and lee waves could contribute to the upward-propagating energy. Our results point strongly to the generation of turbulent mixing through the interaction of internal waves and the intense mesoscale eddy field.

Open access
Ajitha Cyriac
,
Helen E. Phillips
,
Nathaniel L. Bindoff
, and
Ming Feng

Abstract

This study presents the characteristics and spatiotemporal structure of near-inertial waves and their interaction with Leeuwin Current eddies in the eastern south Indian Ocean as observed by Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats. The floats sampled the upper ocean during July–October 2013 with a frequency of eight profiles per day down to 1200 m. Near-inertial waves (NIWs) are found to be the dominant signal in the frequency spectra. Complex demodulation is used to estimate the amplitude and phase of the NIWs from the velocity profiles. The NIW energy propagated from the base of the mixed layer downward into the ocean interior, following beam characteristics of linear wave theory. We visually identified a total of 15 near-inertial internal wave packets from the wave amplitudes and phases with a mean vertical wavelength of 89 ± 63 m, a mean horizontal wavelength of 69 ± 85 km, a mean horizontal group velocity of 3 ± 2 cm s−1, and a mean vertical group velocity of 9 ± 7 m day−1. A strong near-inertial packet with a kinetic energy of 20–30 J m−3 found propagating below 700 m suggests that the NIWs can contribute to deep ocean mixing. A blue shift of 10%–15% in the energy spectrum of the NIWs is observed in the upper 1200 m as the floats move toward the equator. The impacts of mesoscale eddies on the characteristics and propagation of the observed NIWs are also investigated. The elevated near-inertial shear variance in anticyclonic eddies suggests trapping of NIWs near the surface. Cyclonic eddies, in contrast, were associated with weak near-inertial shear variance in the upper 400 m.

Open access
Ajitha Cyriac
,
Amelie Meyer
,
Helen E. Phillips
, and
Nathaniel L. Bindoff

Abstract

We characterize the internal wave field at a standing meander of the Antarctic Circumpolar Current (ACC) where strong winds, bathymetry, and a strong eddy field combine to form a dynamic environment for the generation and dissipation of internal waves. We use Electromagnetic Autonomous Profiling Explorer float data spanning 0–1600 m depth collected from a meander near the Macquarie Ridge, south of Australia. Of the 112 internal waves identified, 69% are associated with upward energy propagation. Most of the upward propagating waves (35%) are found near the Polar Front and are likely generated by mean flow–topography interactions. Generation by wind forcing at the sea surface is likely responsible for more than 40% of the downward propagating waves. Our results highlight advection of the waves and wave–mean flow interactions within the ACC as the dominant processes affecting the wave dynamics. The larger dissipation time scales of the waves compared to advection suggests they are likely to dissipate away from the generation site. We find that about 79% (66%) of the waves in cyclonic eddies (the Subantarctic Front) are influenced by horizontal strain, whereas 92% of the waves in the slower Polar Front are influenced by the relative vorticity of the background flow. There is energy exchange between internal waves and the mean flow, in both directions. The mean energy transfer (1.4 ± 1.0 × 10−11 m2 s−3) is from the mean flow to the waves in all dynamic regions except in anticyclonic eddies. The strongest energy exchange (5.0 ± 3.7 × 10−11 m2 s−3) is associated with waves in cyclonic eddies.

Open access
Amelie Meyer
,
Bernadette M. Sloyan
,
Kurt L. Polzin
,
Helen E. Phillips
, and
Nathaniel L. Bindoff

Abstract

A key remaining challenge in oceanography is the understanding and parameterization of small-scale mixing. Evidence suggests that topographic features play a significant role in enhancing mixing in the Southern Ocean. This study uses 914 high-resolution hydrographic profiles from novel EM-APEX profiling floats to investigate turbulent mixing north of the Kerguelen Plateau, a major topographic feature in the Southern Ocean. A shear–strain finescale parameterization is applied to estimate diapycnal diffusivity in the upper 1600 m of the ocean. The indirect estimates of mixing match direct microstructure profiler observations made simultaneously. It is found that mixing intensities have strong spatial and temporal variability, ranging from O(10−6) to O(10−3) m2 s−1. This study identifies topographic roughness, current speed, and wind speed as the main factors controlling mixing intensity. Additionally, the authors find strong regional variability in mixing dynamics and enhanced mixing in the Antarctic Circumpolar Current frontal region. This enhanced mixing is attributed to dissipating internal waves generated by the interaction of the Antarctic Circumpolar Current and the topography of the Kerguelen Plateau. Extending the mixing observations from the Kerguelen region to the entire Southern Ocean, this study infers a large water mass transformation rate of 17 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) across the boundary of Antarctic Intermediate Water and Upper Circumpolar Deep Water in the Antarctic Circumpolar Current. This work suggests that the contribution of mixing to the Southern Ocean overturning circulation budget is particularly significant in fronts.

Full access
Benjamin J. E. Schroeter
,
Nathaniel L. Bindoff
,
Phil Reid
, and
Simon P. Alexander

Abstract

The special observing periods (SOPs) of the Year of Polar Prediction present an opportunity to assess the skill of numerical weather prediction (NWP) models operating over the Antarctic, many of which assimilated additional observations during an SOP to produce some of the most observationally informed model output to date for the Antarctic region and permitting closer examination of model performance under various configurations and parameterizations. This intercomparison evaluates six NWP models spanning global and limited domains, coupled and uncoupled, operating in the Antarctic during the austral summer SOP between 16 November 2018 and 15 February 2019. Model performance varies regionally between each model and parameter; however, the majority of models were found to be warm biased over the continent with respect to ERA5 at analysis, some with biases growing to 3.5 K over land after 48 h. Temperature biases over sea ice were found to be strongly correlated between analysis and 48 h in uncoupled models, but that this correlation can be reduced through coupling to a sea ice model. Surface pressure and 500-hPa geopotential height forecasts and biases were found to be strongly correlated over open ocean in all models, and wind speed forecasts were found to be generally more skillful at higher resolutions with the exception of fast modeled winds over sloping terrain in PolarWRF. Surface sensible and latent heat flux forecasts and biases produced diverse correlations, varying by model, parameter, and gridcell classification. Of the models evaluated, those which couple atmosphere, sea ice, and ocean typically exhibited stronger skill.

Significance Statement

We evaluated the performance of six numerical weather prediction models operating over the Antarctic during the Year of Polar Prediction austral summer special observing period (16 November 2018–15 February 2019). Our analysis found that several models were as much as 3.5 K warmer than the reference analysis (ERA5) at 48 h over land and were strongly correlated over sea ice in uncoupled models; however, this correlation is reduced through coupling to a sea ice model. Surface pressure biases are communicated to the midtroposphere over the ocean at larger spatial scales, while higher resolution showed an increase in positive wind biases at longer forecasts. Surface turbulent heat fluxes produced complex correlations with other forecast parameters, which should be quantified in future studies. Coupled models that included an ocean/sea ice component typically performed better; providing evidence that the inclusion of such components leads to improved model performance, even at short time scales such as these.

Open access
Saurabh Rathore
,
Nathaniel L. Bindoff
,
Caroline C. Ummenhofer
,
Helen E. Phillips
, and
Ming Feng

Abstract

The long-term trend of sea surface salinity (SSS) reveals an intensification of the global hydrological cycle due to human-induced climate change. This study demonstrates that SSS variability can also be used as a measure of terrestrial precipitation on interseasonal to interannual time scales, and to locate the source of moisture. Seasonal composites during El Niño–Southern Oscillation/Indian Ocean dipole (ENSO/IOD) events are used to understand the variations of moisture transport and precipitation over Australia, and their association with SSS variability. As ENSO/IOD events evolve, patterns of positive or negative SSS anomaly emerge in the Indo-Pacific warm pool region and are accompanied by atmospheric moisture transport anomalies toward Australia. During co-occurring La Niña and negative IOD events, salty anomalies around the Maritime Continent (north of Australia) indicate freshwater export and are associated with a significant moisture transport that converges over Australia to create anomalous wet conditions. In contrast, during co-occurring El Niño and positive IOD events, a moisture transport divergence anomaly over Australia results in anomalous dry conditions. The relationship between SSS and atmospheric moisture transport also holds for pure ENSO/IOD events but varies in magnitude and spatial pattern. The significant pattern correlation between the moisture flux divergence and SSS anomaly during the ENSO/IOD events highlights the associated ocean–atmosphere coupling. A case study of the extreme hydroclimatic events of Australia (e.g., the 2010/11 Brisbane flood) demonstrates that the changes in SSS occur before the peak of ENSO/IOD events. This raises the prospect that tracking of SSS variability could aid the prediction of Australian rainfall.

Free access
Saurabh Rathore
,
Nathaniel L. Bindoff
,
Caroline C. Ummenhofer
,
Helen E. Phillips
,
Ming Feng
, and
Mayank Mishra

Abstract

This study uses sea surface salinity (SSS) as an additional precursor for improving the prediction of summer [December–February (DJF)] rainfall over northeastern Australia. From a singular value decomposition between SSS of prior seasons and DJF rainfall, we note that SSS of the Indo-Pacific warm pool region [SSSP (150°E–165°W and 10°S–10°N) and SSSI (50°–95°E and 10°S–10°N)] covaries with Australian rainfall, particularly in the northeast region. Composite analysis that is based on high or low SSS events in the SSSP and SSSI regions is performed to understand the physical links between the SSS and the atmospheric moisture originating from the regions of anomalously high or low, respectively, SSS and precipitation over Australia. The composites show the signature of co-occurring La Niña and negative Indian Ocean dipole with anomalously wet conditions over Australia and conversely show the signature of co-occurring El Niño and positive Indian Ocean dipole with anomalously dry conditions there. During the high SSS events of the SSSP and SSSI regions, the convergence of incoming moisture flux results in anomalously wet conditions over Australia with a positive soil moisture anomaly. Conversely, during the low SSS events of the SSSP and SSSI regions, the divergence of incoming moisture flux results in anomalously dry conditions over Australia with a negative soil moisture anomaly. We show from the random-forest regression analysis that the local soil moisture, El Niño–Southern Oscillation (ENSO), and SSSP are the most important precursors for the northeast Australian rainfall whereas for the Brisbane region ENSO, SSSP, and the Indian Ocean dipole are the most important. The prediction of Australian rainfall using random-forest regression shows an improvement by including SSS from the prior season. This evidence suggests that sustained observations of SSS can improve the monitoring of the Australian regional hydrological cycle.

Full access
Eric C. J. Oliver
,
Sarah E. Perkins-Kirkpatrick
,
Neil J. Holbrook
, and
Nathaniel L. Bindoff
Full access