Search Results

You are looking at 11 - 12 of 12 items for :

  • Author or Editor: Nusrat Yussouf x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
John R. Lawson
,
John S. Kain
,
Nusrat Yussouf
,
David C. Dowell
,
Dustan M. Wheatley
,
Kent H. Knopfmeier
, and
Thomas A. Jones

Abstract

The Warn-on-Forecast (WoF) program, driven by advanced data assimilation and ensemble design of numerical weather prediction (NWP) systems, seeks to advance 0–3-h NWP to aid National Weather Service warnings for thunderstorm-induced hazards. An early prototype of the WoF prediction system is the National Severe Storms Laboratory (NSSL) Experimental WoF System for ensembles (NEWSe), which comprises 36 ensemble members with varied initial conditions and parameterization suites. In the present study, real-time 3-h quantitative precipitation forecasts (QPFs) during spring 2016 from NEWSe members are compared against those from two real-time deterministic systems: the operational High Resolution Rapid Refresh (HRRR, version 1) and an upgraded, experimental configuration of the HRRR. All three model systems were run at 3-km horizontal grid spacing and differ in initialization, particularly in the radar data assimilation methods. It is the impact of this difference that is evaluated herein using both traditional and scale-aware verification schemes. NEWSe, evaluated deterministically for each member, shows marked improvement over the two HRRR versions for 0–3-h QPFs, especially at higher thresholds and smaller spatial scales. This improvement diminishes with forecast lead time. The experimental HRRR model, which became operational as HRRR version 2 in August 2016, also provides added skill over HRRR version 1.

Full access
Pamela L. Heinselman
,
Patrick C. Burke
,
Louis J. Wicker
,
Adam J. Clark
,
John S. Kain
,
Jidong Gao
,
Nusrat Yussouf
,
Thomas A. Jones
,
Patrick S. Skinner
,
Corey K. Potvin
,
Katie A. Wilson
,
Burkely T. Gallo
,
Montgomery L. Flora
,
Joshua Martin
,
Gerry Creager
,
Kent H. Knopfmeier
,
Yunheng Wang
,
Brian C. Matilla
,
David C. Dowell
,
Edward R. Mansell
,
Brett Roberts
,
Kimberly A. Hoogewind
,
Derek R. Stratman
,
Jorge Guerra
,
Anthony E. Reinhart
,
Christopher A. Kerr
, and
William Miller

Abstract

In 2009, advancements in NWP and computing power inspired a vision to advance hazardous weather warnings from a warn-on-detection to a warn-on-forecast paradigm. This vision would require not only the prediction of individual thunderstorms and their attributes but the likelihood of their occurrence in time and space. During the last decade, the warn-on-forecast research team at the NOAA National Severe Storms Laboratory met this challenge through the research and development of 1) an ensemble of high-resolution convection-allowing models; 2) ensemble- and variational-based assimilation of weather radar, satellite, and conventional observations; and 3) unique postprocessing and verification techniques, culminating in the experimental Warn-on-Forecast System (WoFS). Since 2017, we have directly engaged users in the testing, evaluation, and visualization of this system to ensure that WoFS guidance is usable and useful to operational forecasters at NOAA national centers and local offices responsible for forecasting severe weather, tornadoes, and flash floods across the watch-to-warning continuum. Although an experimental WoFS is now a reality, we close by discussing many of the exciting opportunities remaining, including folding this system into the Unified Forecast System, transitioning WoFS into NWS operations, and pursuing next-decade science goals for further advancing storm-scale prediction.

Significance Statement

The purpose of this research is to develop an experimental prediction system that forecasts the probability for severe weather hazards associated with individual thunderstorms up to 6 h in advance. This capability is important because some people and organizations, like those living in mobile homes, caring for patients in hospitals, or managing large outdoor events, require extended lead time to protect themselves and others from potential severe weather hazards. Our results demonstrate a prediction system that enables forecasters, for the first time, to message probabilistic hazard information associated with individual severe storms between the watch-to-warning time frame within the United States.

Restricted access