Search Results

You are looking at 11 - 20 of 45 items for

  • Author or Editor: O. E. Smith x
  • Refine by Access: All Content x
Clear All Modify Search
W. L. Smith
,
H. E. Revercomb
,
R. O. Knuteson
,
F. A. Best
,
R. Dedecker
,
H. B. Howell
, and
H. M. Woolf

Abstract

The characteristics of the ER-2 aircraft and ground-based High Resolution Interferometer Sounder (HIS) instruments deployed during FIRE II are described. A few example spectra are given to illustrate the HIS cloud and molecular atmosphere remote sensing capabilities.

Full access
S. A. Ackerman
,
W. L. Smith
,
A. D. Collard
,
X. L. Ma
,
H. E. Revercomb
, and
R. O. Knuteson

Abstract

This paper parts analysis of cloud observations by the High-Resolution Interferometer Sounder made from the NASA ER-2 aircraft during FIRE II. Clear and cloudy sky radiance spectra are presented in terms of differences between observations and radiative transfer model simulations.

Doubling/adding radiative transfer model simulations demonstrate that the magnitude of the brightness temperature differences (ΔBT) is a function of the cloud particle size distribution and the cloud ice water path. For effective radii greater than approximately 30 µm (size parameter of 18) there is little spectral variation in the brightness temperature (BT). An analysis of brightness temperature differences indicates that cirrus clouds over the FIRE II central site possessed a small-particle mode. The cases analyzed had similar appearances in a plot of ΔBT between 11 and 12 µm (BT11 – BT12) versus the observed ΔBT between 8 and 11 µm (BT8 – BT11), suggesting similarity in the microphysical properties of nongray cirrus. Brightness temperature differences between cirrus cloud over the central site and the Gulf of Mexico are presented to illustrate differences in the cirrus microphysical properties at the two different locations.

Cloud effective emissivities and effective radiative temperature were derived for observations over the FIRE central site using complementary lidar and radiosonde data. Small variations in these effective properties were seen on 5 December and 22 November. Although they had similar effective temperatures, the emissivities were very different. Very few clouds were observed to have an emissivity near unity.

Full access
A. D. Collard
,
S. A. Ackerman
,
W. L. Smith
,
X. Ma
,
H. E. Revercomb
,
R. O. Knuteson
, and
S-C. Lee

Abstract

During FIRE II, cirrus clouds were observed in the wavelength range 3–19, µm with two High Resolution Interferometer Sounders as described in the Part I companion paper. One, known as AC-HIS, was mounted on the NASA ER-2 aircraft in order to look down on the clouds; these results are described in the Part II companion paper. The other, GB-HIS, also known as the Atmospheric Emitted Radiance Interferometer (AERI), was ground based. The AERI observations have been simulated, assuming scattering from spherical ice particles, using a single-layer doubling model for the cloud, for two atmospheric windows at 700–1250 and 2650–3000 cm−1. The second of these windows is affected by scattered sunlight, which has been included in the calculations. The sensitivity of the cloud signal to quantities such as the ice water path (IWP) and effective radius (r eff) have been determined. Using the cloud model, best fits have been derived for IWP and r eff, for both windows individually and together. Possible errors in these derivations have been investigated.

Full access
Steven A. Ackerman
,
Ed W. Eloranta
,
Chris J. Grund
,
Robert O. Knuteson
,
Henry E. Revercomb
,
William L. Smith
, and
Donald P. Wylie

During the period of 26 October 1989 through 6 December 1989 a unique complement of measurements was made at the University of Wisconsin—Madison to study the radiative properties of cirrus clouds. Simultaneous observations were obtained from a scanning lidar, two interferometers, a high spectral resolution lidar, geostationary and polar orbiting satellites, radiosonde launches, and a whole-sky imager. This paper describes the experiment, the instruments deployed, and, as an example, the data collected during one day of the experiment.

Full access
W. L. Smith Sr.
,
D. K. Zhou
,
A. M. Larar
,
S. A. Mango
,
H. B. Howell
,
R. O. Knuteson
,
H. E. Revercomb
, and
W. L. Smith Jr.

Abstract

During the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS), the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I), flying aboard the high-altitude Proteus aircraft, observed the spatial distribution of infrared radiance across the 650–2700 cm−1 (3.7–15.4 μm) spectral region with a spectral resolution of 0.25 cm−1. NAST-I scans cross track with a moderate spatial resolution (a linear ground resolution equal to 13% of the aircraft altitude at nadir). The broad spectral coverage and high spectral resolution of this instrument provides abundant information about the surface and three-dimensional state of the atmosphere. In this paper, the NAST-I measurements and geophysical product retrieval methodology employed for CLAMS are described. Example results of surface properties and atmospheric temperature, water vapor, ozone, and carbon monoxide distributions are provided. The CLAMS NAST-I geophysical dataset is available for use by the scientific community.

Full access
W. L. Smith
,
H. E. Revercomb
,
H. B. Howell
,
H-L. Huang
,
R. O. Knuteson
,
E. W. Koenig
,
D. D. LaPorte
,
S. Silverman
,
L. A. Sromovsky
, and
H. M. Woolf

Abstract

A high spectral resolution interferometer sounder (GHIS) has been designed for flight on future geostationary meteorological satellites. It incorporates the measurement principles of an aircraft prototype instrument, which has demonstrated the capability to observe the earth-emitted radiance spectrum with high accuracy. The aircraft results indicate that the theoretical expectation of 1°C temperature and 2°–3°C dewpoint retrieval accuracy will be achieved. The vertical resolution of the water vapor profile appears good enough to enable moisture tracking in numerous vertical layers thereby providing wind profile information as well as thermodynamic profiles of temperature and water vapor.

Full access
Deborah E. Hanley
,
Mark A. Bourassa
,
James J. O'Brien
,
Shawn R. Smith
, and
Elizabeth R. Spade

Abstract

El Niño–Southern Oscillation (ENSO) is a natural, coupled atmospheric–oceanic cycle that occurs in the tropical Pacific Ocean on an approximate timescale of 2–7 yr. ENSO events have been shown in previous studies to be related to regional extremes in weather (e.g., hurricane occurrences, frequency and severity of tornadoes, droughts, and floods). The teleconnection of ENSO events to extreme weather events means that the ability to classify an event as El Niño or La Niña is of interest in scientific and other applications.

ENSO is most often classified using indices that indicate the warmth and coolness of equatorial tropical Pacific Ocean sea surface temperatures (SSTs). Another commonly used index is based on sea level pressure differences measured across the tropical Pacific Ocean. More recently, other indices have been proposed and have been shown to be effective in describing ENSO events. There is currently no consensus within the scientific community as to which of many indices best captures ENSO phases. The goal of this study is to compare several commonly used ENSO indices and to determine whether or not one index is superior in defining ENSO events; or alternatively, to determine which indices are best for various applications.

The response and sensitivity of the SST-based indices and pressure-based indices are compared. The Niño-4 index has a relatively weak response to El Niño; the Niño-1+2 index has a relatively strong response to La Niña. Analysis of the sensitivity of the indices relative to one another suggests that the choice of index to use in ENSO studies is dependent upon the phase of ENSO that is to be studied. The Japan Meteorological Agency (JMA) index is found to be more sensitive to La Niña events than all other indices. The Southern Oscillation, Niño-3.4, and Niño-4 indices are almost equally sensitive to El Niño events and are more sensitive than the JMA, Niño-1+2, and Niño-3 indices.

Full access
Jose A. Marengo
,
Luiz E.O.C. Aragão
,
Peter M. Cox
,
Richard Betts
,
Duarte Costa
,
Neil Kaye
,
Lauren T. Smith
,
Lincoln M. Alves
, and
Vera Reis
Full access
William L. Smith
,
R. O. Knuteson
,
H. E. Revercomb
,
W. Feltz
,
H. B. Howell
,
W. P. Menzel
,
N. R. Nalli
,
Otis Brown
,
James Brown
,
Peter Minnett
, and
Walter McKeown

The Atmospheric Emitted Radiance Interferometer (AERI) was used to measure the infrared radiative properties and the temperature of the Gulf of Mexico during a 5-day oceanographic cruise in January 1995. The ocean skin temperature was measured with an accuracy believed to be better than 0.1 °C. The surface reflectivity/emissivity was determined as a function of view angle and sea state. The radiative properties are in good theoretical consistency with in situ measurements of ocean bulk temperature and the meteorological observations made from the oceanographic vessel. The AERI and in situ measurements provide a strong basis for accurate global specifications of sea surface temperature and ocean heat flux from satellites and ships.

Full access
D. D. Turner
,
D. C. Tobin
,
S. A. Clough
,
P. D. Brown
,
R. G. Ellingson
,
E. J. Mlawer
,
R. O. Knuteson
,
H. E. Revercomb
,
T. R. Shippert
,
W. L. Smith
, and
M. W. Shephard

Abstract

Research funded by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program has led to significant improvements in longwave radiative transfer modeling over the last decade. These improvements, which have generally come in small incremental changes, were made primarily in the water vapor self- and foreign-broadened continuum and the water vapor absorption line parameters. These changes, when taken as a whole, result in up to a 6 W m−2 improvement in the modeled clear-sky downwelling longwave radiative flux at the surface and significantly better agreement with spectral observations. This paper provides an overview of the history of ARM with regard to clear-sky longwave radiative transfer, and analyzes remaining related uncertainties in the ARM state-of-the-art Line-by-Line Radiative Transfer Model (LBLRTM).

A quality measurement experiment (QME) for the downwelling infrared radiance at the ARM Southern Great Plains site has been ongoing since 1994. This experiment has three objectives: 1) to validate and improve the absorption models and spectral line parameters used in line-by-line radiative transfer models, 2) to assess the ability to define the atmospheric state, and 3) to assess the quality of the radiance observations that serve as ground truth for the model. Analysis of data from 1994 to 1997 made significant contributions to optimizing the QME, but is limited by small but significant uncertainties and deficiencies in the atmospheric state and radiance observations. This paper concentrates on the analysis of QME data from 1998 to 2001, wherein the data have been carefully selected to address the uncertainties in the 1994–97 dataset. Analysis of this newer dataset suggests that the representation of self-broadened water vapor continuum absorption is 3%–8% too strong in the 750–1000 cm−1 region. The dataset also provides information on the accuracy of the self- and foreign-broadened continuum absorption in the 1100–1300 cm−1 region. After accounting for these changes, remaining differences in modeled and observed downwelling clear-sky fluxes are less than 1.5 W m−2 over a wide range of atmospheric states.

Full access