Search Results

You are looking at 11 - 20 of 29 items for

  • Author or Editor: P. Minnis x
  • Refine by Access: All Content x
Clear All Modify Search
G. L. Potter
,
R. D. Cess
,
P. Minnis
,
E. F. Harrison
, and
V. Ramanathan

Abstract

This study addresses two aspects of the planetary albedo's diurnal cycle, the first of which refers to directional models of the planetary albodo. It is found that even for clear regions there appear to be deficiencies in our knowledge of how to model this quantity. Over land surfaces, for example, Nimbus-7 data for the directional planetary albedo compare best with model calculations for which a Lambertian surface is assumed, despite ample evidence that the albedo of land surfaces is dependent upon solar zenith angle. Similarly, over ocean surfaces both GOES and Nimbus-7 data produce a weaker dependence of the planetary albedo upon solar zenith angle than would be suggested by model calculations.

The second aspect of the study concerns a comparison of the diurnal amplitude factor, defined as the ratio of the diurnally averaged planetary albedo to that at noon, between two general circulation models (GCMs) and measurements made from a geostationary satellite (GOES). While these comparisons indicate reasonable consistency between the GCMs and the satellite measurements, this is due in part to compensating differences, such as an underestimate in cloud amount by a GCM being compensated for by a corresponding underestimate of the diurnal amplitude factor for overcast regions. The comparisons further underscore difficulties associated with converting local-time albedo measurements, as made from sun-synchronous satellites, to diurnally averaged albedos.

Full access
Patrick Minnis
,
J. Kirk Ayers
,
Michele L. Nordeen
, and
Steven P. Weaver

Abstract

Contrails have the potential for affecting climate because they impact the radiation budget and the vertical distribution of moisture. Estimating the effect requires additional knowledge about the temporal and spatial variations of contrails. The mean hourly, monthly, and annual frequencies of daytime contrail occurrence are estimated using 2 yr of observations from surface observers at military installations scattered over the continental United States. During both years, persistent contrails are most prevalent in the winter and early spring and are seen least often during the summer. They co-occur with cirrus clouds 85% of the time. The annual mean persistent contrail frequencies in unobscured skies dropped from 0.152 during 1993–94 to 0.124 in 1998–99 despite a rise in air traffic. Mean hourly contrail frequencies reflect the pattern of commercial air traffic, with a rapid increase from sunrise to midmorning followed by a very gradual decrease during the remaining daylight hours. Although highly correlated with air traffic fuel use, contrail occurrence is governed by meteorological conditions. It is negatively and positively correlated with the monthly mean 300-hPa temperature and 300-hPa relative humidity, respectively, from the National Centers for Environmental Prediction (NCEP) reanalyses. A simple empirical model employing the fuel use and the monthly mean 300-hPa temperatures and relative humidities yields a reasonable representation of the seasonal variation in contrail frequency. The interannual drop in contrail frequency coincides with a decrease in mean 300-hPa relative humidities from 45.8% during the first period to 38.2% in 1998–99, one of the driest periods in the NCEP record.

Full access
G. M. Martin
,
D. W. Johnson
,
D. P. Rogers
,
P. R. Jonas
,
P. Minnis
, and
D. A. Hegg

Abstract

Decoupling of the marine boundary layer beneath stratocumulus clouds and the formation of cumulus clouds at the top of a surface-based mixed layer (SML) have frequently been observed and modeled. When such cumulus clouds penetrate the overlying stratocumulus layer, the cloud microphysics and hence the radiative properties of the cloud are altered locally. Observations made during a series of Lagrangian experiments in the Azores as part of the Atlantic Stratocumulus Transition Experiment (ASTEX, June 1992) have been analyzed to ascertain how the properties of a stratocumulus layer with which cumulus clouds are interacting differ from those of an unaffected cloud layer. The results suggest that in regions where cumulus clouds penetrate the cloud layer, the stratocumulus is thickened as the cumuli spread out into its base. Transport of air from the SML into the cloud by convective updrafts is observed, and the increase in available moisture within the penetrating cumulus clouds results in increased liquid water content and hence changes in the droplet size spectra. The greater liquid water path results in a larger cloud optical depth, so that regions where cumulus are interesting with the stratocumulus layer can be observed in satellite measurements. Therefore, it is likely that the surface energy budget may be significantly altered by this process, and it may be necessary to parameterize these effects in large-scale numerical models.

Full access
K. Van Weverberg
,
A. M. Vogelmann
,
W. Lin
,
E. P. Luke
,
A. Cialella
,
P. Minnis
,
M. Khaiyer
,
E. R. Boer
, and
M. P. Jensen

Abstract

This paper presents a detailed analysis of convection-permitting cloud simulations, aimed at increasing the understanding of the role of parameterized cloud microphysics in the simulation of mesoscale convective systems (MCSs) in the tropical western Pacific (TWP). Simulations with three commonly used bulk microphysics parameterizations with varying complexity have been compared against satellite-retrieved cloud properties. An MCS identification and tracking algorithm was applied to the observations and the simulations to evaluate the number, spatial extent, and microphysical properties of individual cloud systems. Different from many previous studies, these individual cloud systems could be tracked over larger distances because of the large TWP domain studied.

The analysis demonstrates that the simulation of MCSs is very sensitive to the parameterization of microphysical processes. The most crucial element was found to be the fall velocity of frozen condensate. Differences in this fall velocity between the experiments were more related to differences in particle number concentrations than to fall speed parameterization. Microphysics schemes that exhibit slow sedimentation rates for ice aloft experience a larger buildup of condensate in the upper troposphere. This leads to more numerous and/or larger MCSs with larger anvils. Mean surface precipitation was found to be overestimated and insensitive to the microphysical schemes employed in this study. In terms of the investigated properties, the performances of complex two-moment schemes were not superior to the simpler one-moment schemes, since explicit prediction of number concentration does not necessarily improve processes such as ice nucleation, the aggregation of ice crystals into snowflakes, and their sedimentation characteristics.

Full access
W. B. Rossow
,
F. Mosher
,
E. Kinsella
,
A. Arking
,
M. Desbois
,
E. Harrison
,
P. Minnis
,
E. Ruprecht
,
G. Seze
,
C. Simmer
, and
E. Smith

Abstract

The International Satellite Cloud Climatology Project (ISCCP) will provide a uniform global climatology of satellite-measured radiances and derive an experimental climatology of cloud radiative properties from these radiances. A pilot study to intercompare cloud analysis algorithms was initiated in 1981 to define a state-of-the-art algorithm for ISCCP. This study compared the results of applying six different algorithms to the same satellite radiance data. The results show that the performance of all current algorithms depends on how accurately the clear sky radiances are specified; much improvement in results is possible with better methods for obtaining these clear-sky radiances. A major difference between the algorithms is caused by their sensitivity to changes in the cloud size distribution and optical properties: all methods, which work well for some cloud types or climate regions, do poorly for other situations. Therefore, the ISCCP algorithm is composed of a series of steps, each of which is designed to detect some of the clouds present in the scene. This progressive analysis is used to retrieve an estimate of the clear sky radiances corresponding to each satellite image. Application of a bispectral threshold is then used as the last step to determine the cloud fraction. Cloudy radiances are interpreted in terms of a simplified model of cloud radiative effects to provide some measure of cloud radiative properties. Application of this experimental algorithm to produce a cloud climatology and field observation programs to validate the results will stimulate further research on cloud analysis techniques as part of ISCCP.

Full access
Patrick Minnis
,
Louis Nguyen
,
David R. Doelling
,
David F. Young
,
Walter F. Miller
, and
David P. Kratz

Abstract

Operational meteorological satellites generally lack reliable onboard calibration systems for solar-imaging channels. Current methods for calibrating these channels and for normalizing similar channels on contemporaneous satellite imagers typically rely on a poorly calibrated reference source. To establish a more reliable reference instrument for calibration normalization, this paper examines the use of research satellite imagers that maintain their solar-channel calibrations by using onboard diffuser systems that rely on the sun as an absolute reference. The Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and the second Along-Track Scanning Radiometer (ATSR-2) on the second European Remote Sensing Satellite (ERS-2) are correlated with matched data from the eighth Geostationary Operational Environmental Satellite (GOES-8), the fifth Geostationary Meteorological satellite (GMS-5), and with each other to examine trends in the solar channels. VIRS data are also correlated with the Terra satellite's Moderate Resolution Imaging Spectroradiometer (MODIS) provisional data as a preliminary assessment of their relative calibrations. As an additional check on their long-term stability, the VIRS data are compared to the relevant corresponding broadband shortwave radiances of the Clouds and the Earth's Radiant Energy System (CERES) scanners on TRMM. No statistically significant trend in the calibration of the VIRS 0.65- and 1.64-μm channels could be detected from the comparisons with CERES data taken during 1998 and 2000. The VIRS-to-GOES-8 correlations revealed an annual degradation rate for the GOES-8 visible (0.67 μm) channel of ∼7.5% and an initial drop of 16% in the gain from the prelaunch value. The slopes in the GOES-8 visible-channel gain trend lines derived from VIRS data taken after January 1998 and ATSR-2 data taken between October 1995 and December 1999 differed by only 1%–2% indicating that both reference instruments are highly stable. The mean difference of 3%–4.8% between the VIRS–GOES-8 and ATSR-2–GOES-8 gains is attributed to spectral differences between ATSR-2 and VIRS and to possible biases in the ATSR-2 channel-2 calibration. A degradation rate of 1.3% per year found for the GMS-5 visible channel was confirmed by comparisons with earlier calibrations. The MODIS and VIRS calibrations agreed to within −1% to 3%. Some of the differences between VIRS and the provisional MODIS radiances can be explained by spectral differences between the two instruments. The MODIS measures greater reflectance than VIRS for bright scenes. Although both VIRS and ATSR-2 provide temporally stable calibrations, it is recommended that, at least until MODIS calibrations are finalized, VIRS should be used as a reference source for normalizing operational meteorological satellite imagers because of its broader visible filter.

Full access
Patrick Minnis
,
Louis Nguyen
,
David R. Doelling
,
David F. Young
,
Walter F. Miller
, and
David P. Kratz

Abstract

To establish a more reliable reference instrument for calibration normalization, this paper examines the differences between the various thermal infrared imager channels on a set of research and operational satellites. Mean brightness temperatures from the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and the second Along-Track Scanning Radiometer (ATSR-2) on the second European Remote Sensing Satellite (ERS-2) are correlated with matched data from the eighth Geostationary Operational Environmental Satellite (GOES-8), the fifth Geostationary Meteorological Satellite (GMS-5), and with each other. VIRS data are also correlated with the Terra satellite's Moderate Resolution Imaging Spectroradiometer (MODIS) provisional data as a preliminary assessment of their relative calibrations. As an additional check on their long-term stability, the VIRS data are compared to the broadband longwave radiances of the Clouds and the Earth's Radiant Energy System (CERES) scanners on TRMM. No statistically significant trend in the calibration of any of the three (3.7, 10.8, and 12.0 μm) VIRS thermal channels could be detected from the comparisons with CERES data taken during 1998 and 2000 indicating that the VIRS channels can serve as a reliable reference for intercalibrating satellite imagers. However, a small day–night difference in the VIRS thermal channels detected at very low temperatures should be taken into account. In general, most of the channels agreed to within less than ±0.7 K over a temperature range between 200 and 300 K. Some of the smaller differences can be explained by spectral differences in the channel response functions. A few larger differences were found at 200 K for some of the channels suggesting some basic calibration differences for lower temperatures. A nearly 3-K bias in the ATSR-2 11-μm channel relative to VIRS and GOES-8 was found at the cold end of the temperature range. The intercalibrations described here are being continued on a routine basis.

Full access
M. Chiriaco
,
H. Chepfer
,
P. Minnis
,
M. Haeffelin
,
S. Platnick
,
D. Baumgardner
,
P. Dubuisson
,
M. McGill
,
V. Noël
,
J. Pelon
,
D. Spangenberg
,
S. Sun-Mack
, and
G. Wind

Abstract

This study compares cirrus-cloud properties and, in particular, particle effective radius retrieved by a Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)-like method with two similar methods using Moderate-Resolution Imaging Spectroradiometer (MODIS), MODIS Airborne Simulator (MAS), and Geostationary Operational Environmental Satellite imagery. The CALIPSO-like method uses lidar measurements coupled with the split-window technique that uses the infrared spectral information contained at the 8.65-, 11.15-, and 12.05-μm bands to infer the microphysical properties of cirrus clouds. The two other methods, using passive remote sensing at visible and infrared wavelengths, are the operational MODIS cloud products (using 20 spectral bands from visible to infrared, referred to by its archival product identifier MOD06 for MODIS Terra) and MODIS retrievals performed by the Clouds and the Earth’s Radiant Energy System (CERES) team at Langley Research Center (LaRC) in support of CERES algorithms (using 0.65-, 3.75-, 10.8-, and 12.05-μm bands); the two algorithms will be referred to as the MOD06 and LaRC methods, respectively. The three techniques are compared at two different latitudes. The midlatitude ice-clouds study uses 16 days of observations at the Palaiseau ground-based site in France [Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA)], including a ground-based 532-nm lidar and the MODIS overpasses on the Terra platform. The tropical ice-clouds study uses 14 different flight legs of observations collected in Florida during the intensive field experiment known as the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL-FACE), including the airborne cloud-physics lidar and the MAS. The comparison of the three methods gives consistent results for the particle effective radius and the optical thickness but discrepancies in cloud detection and altitudes. The study confirms the value of an active remote sensing method (CALIPSO like) for the study of subvisible ice clouds, in both the midlatitudes and Tropics. Nevertheless, this method is not reliable in optically very thick tropical ice clouds, because of their particular microphysical properties.

Full access
C. N. Long
,
S. A. McFarlane
,
A. Del Genio
,
P. Minnis
,
T. P. Ackerman
,
J. Mather
,
J. Comstock
,
G. G. Mace
,
M. Jensen
, and
C. Jakob

The tropical western Pacific (TWP) is an important climatic region. Strong solar heating, warm sea surface temperatures, and the annual progression of the intertropical convergence zone (ITCZ) across this region generate abundant convective systems, which through their effects on the heat and water budgets have a profound impact on global climate and precipitation. In order to accurately evaluate tropical cloud systems in models, measurements of tropical clouds, the environment in which they reside, and their impact on the radiation and water budgets are needed. Because of the remote location, ground-based datasets of cloud, atmosphere, and radiation properties from the TWP region have come primarily from shortterm field experiments. While providing extremely useful information on physical processes, these short-term datasets are limited in statistical and climatological information. To provide longterm measurements of the surface radiation budget in the tropics and the atmospheric properties that affect it, the Atmospheric Radiation Measurement program established a measurement site on Manus Island, Papua New Guinea, in 1996 and on the island republic of Nauru in late 1998. These sites provide unique datasets now available for more than 10 years on Manus and Nauru. This article presents examples of the scientific use of these datasets including characterization of cloud properties, analysis of cloud radiative forcing, model studies of tropical clouds and processes, and validation of satellite algorithms. New instrumentation recently installed at the Manus site will provide expanded opportunities for tropical atmospheric science.

Full access
Yuekui Yang
,
Alexander Marshak
,
J. Christine Chiu
,
Warren J. Wiscombe
,
Stephen P. Palm
,
Anthony B. Davis
,
Douglas A. Spangenberg
,
Louis Nguyen
,
James D. Spinhirne
, and
Patrick Minnis

Abstract

Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other spaceborne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so one must first calibrate the reflected solar radiation received by the photon-counting detectors of the GLAS 532-nm channel, the primary channel for atmospheric products. Solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (i) calibration with coincident airborne and GLAS observations, (ii) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds, and (iii) calibration from first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.

Full access