Search Results

You are looking at 11 - 20 of 84 items for

  • Author or Editor: Paul Dirmeyer x
  • Refine by Access: All Content x
Clear All Modify Search
Paul A. Dirmeyer

Abstract

A coupled land–atmosphere climate model is examined for evidence of climate drift in the land surface state variable of soil moisture. The drift is characterized as pathological error growth in two different ways. First is the systematic error that is evident over seasonal timescales, dominated by the error modes with the largest saturated amplitude: systematic drift. Second is the fast-growing modes that are present in the first few days after either initialization or a data assimilation increment: incremental drift. When the drifts are robust across many ensemble members and from year to year, they suggest a source of drift internal to the coupled system. This source may be due to problems in either component model or in the coupling between them. Evidence is presented for both systematic and incremental drift. The relationship between the two types of drift at any given point is shown to be an indication of the type and strength of feedbacks within the coupled system. Methods for elucidating potential sources of the drift are proposed.

Full access
Paul A. Dirmeyer
and
Kaye L. Brubaker

Abstract

Regional precipitation recycling may constitute a feedback mechanism affecting soil moisture memory and the persistence of anomalously dry or wet states. Bulk methods, which estimate recycling based on time-averaged variables, have been applied on a global basis, but these methods may underestimate recycling by neglecting the effects of correlated transients. A back-trajectory method identifies the evaporative sources of vapor contributing to precipitation events by tracing air motion backward in time through the analysis grid of a data-assimilating numerical model. The back-trajectory method has been applied to several large regions; in this paper it is extended to all global land areas for 1979–2003. Meteorological information (wind vectors, humidity, surface pressure, and evaporation) are taken from the NCEP–Department of Energy (DOE) reanalysis, and a hybrid 3-hourly precipitation dataset is produced to establish the termini of the trajectories. The effect of grid size on the recycling fraction is removed using an empirical power-law relationship; this allows comparison among any land areas on a latitude–longitude grid. Recycling ratios are computed on a monthly basis for a 25-yr period. The annual and seasonal averages are consistent with previous estimates in terms of spatial patterns, but the trajectory method generally gives higher estimates of recycling than a bulk method, using compatible spatial scales. High northern latitude regions show the largest amplitude in the annual cycle of recycling, with maxima in late spring/early summer. Amplitudes in arid regions are small in absolute terms, but large relative to their mean values. Regions with strong interannual variability in recycling do not correspond directly to regions with strong intra-annual variability. The average recycling ratio at a spatial scale of 105 km2 for all land areas of the globe is 4.5%; on a global basis, recycling shows a weak positive trend over the 25 yr, driven largely by increases at high northern latitudes.

Full access
Oreste Reale
,
Paul Dirmeyer
, and
Adam Schlosser

Abstract

This is the second of a two-part article investigating the impact of variations of land surface evaporability on the interannual variability of precipitation. The first goal of this part is to analyze the relationship between the atmospheric internal variability and the evaporative forcings. The hypothesis that the sum of ocean- and atmosphere-induced variabilities can be linearly amplified by the land variability is critically revisited and generally found not applicable to the climate model used and the numerical experiments conducted. A set of parameters to evaluate the departure from the linear behavior is defined, quantifying the impact of the different forcings over the total variability. Some areas of the world (e.g., the monsoon region, the continental United States, and southeastern Africa), where the impact of internal atmospheric dynamics on precipitation variability is small compared to the impact of the evaporative forcings, are localized. Over these areas, the variability of precipitation might be more predictable, given a good knowledge of the surface boundary forcings.

In the second half of this article the time structure of the land forcing is analyzed, to quantify the contributions of the interannual variations, diurnal cycle, and high-frequency (i.e., synoptic scale) variations and compare them with the contribution of the oceanic forcing. The general conclusion is that interannual variability of both sea surface temperature and land evaporability is very important to the overall variability of precipitation over the Tropics. Over land in the subtropics and midlatitudes equatorward of the polar front there are also substantial feedbacks at the interannual scale. The impact of synoptic-scale variations of land evaporability is generally smaller, except for some areas in the midlatitudes near the polar front, particularly continental Eurasia and parts of North America. Finally, there is no general, widespread evidence showing the importance of the diurnal cycle of evaporability to the interannual variability of precipitation. However, strong regional differences are detected, and some tropical areas, like the Congo basin, where the diurnal cycle does contribute to the interannual variability of precipitation are outlined.

Full access
Xiang Gao
and
Paul A. Dirmeyer

Abstract

Multimodel ensemble forecasting has been shown to offer a systematic improvement in the skill of climate prediction with atmosphere and ocean circulation models. However, little such work has been done for the land surface component, an important lower boundary for weather and climate forecast models. In this study, the authors examine and evaluate several methods of combining individual global soil wetness products from uncoupled land surface model calculations and coupled land–atmosphere model reanalyses to produce an ensemble analysis. Analyses are verified against observations from the Global Soil Moisture Data Bank (GSMDB) with skill measured by correlation coefficient and root-mean-square error (RMSE). A preliminary transferability study is conducted as well for investigating the feasibility of transferring ensemble regression parameters within two specific regions (Illinois and east-central China) and between these two regions of similar climate and land use. The results show that when sufficient validation data are available, one can use a seasonally dependent linear regression to improve the skill of any individual model simulation of soil wetness. Further improvements in skill can be achieved with more sophisticated ensembling methods, such as the regression-adjusted multimodel ensemble mean analysis and regression-adjusted multimodel analysis. However, all the ensembling schemes involving regression usually do not help improve the skill scores as far as the simulation of anomalies of soil wetness is concerned. In the absence of calibration data, the simple arithmetic ensemble mean across multiple soil wetness products generally does as well or better than the best individual model at any location in the representation of both soil wetness and its anomaly. Transferability from one subset of stations from the Illinois or east-central China dataset to another gives satisfactory results. However, results are poor when transferring regression weights between different regions, even with similar climate regimes and land cover. Such an exercise helps us to understand better the virtues and limitations of various ensembling techniques and enables progress toward creating an optimum, model-independent analysis from a practical point of view.

Full access
Hsin Hsu
and
Paul A. Dirmeyer

Abstract

The control of latent heat flux (LE) by soil moisture (SM) is a key process affecting the moisture and energy budgets at the land–atmosphere interface. SM–LE coupling relationships are conventionally examined using metrics involving temporal correlation. However, such a traditional linear approach, which fits a straight line across the full SM–LE space to evaluate the dependency, leaves out certain critical information: nonlinear SM–LE relationships and the long-recognized thresholds that lead to dramatically different behavior in different ranges of soil moisture, delineating a dry regime, a transitional regime of high sensitivity, and a wet (energy-limited) regime. Using data from climate models, reanalyses, and observationally constrained datasets, global patterns of SM–LE regimes are determined by segmented regression. Mutual information analysis is applied only for days when SM is in the transitional regime between critical points defining high sensitivity of LE to SM variations. Sensitivity is further decomposed into linear and nonlinear components. Results show discrepancies in the global patterns of existing SM regimes, but general consistencies among the linear and nonlinear components of SM–LE coupling. This implies that although models simulate differing surface hydroclimates, once SM is in the transitional regime, the locations where LE closely interacts with SM are well captured and resemble the conventional distribution of “hotspots” of land–atmosphere interactions. This indicates that only the transitional SM regime determines the strength of coupling, and attention should focused on when this regime occurs. This framework can also be applied to investigate extremes and the shifting surface hydroclimatology in a warming climate.

Significance Statement

Evaporation is sensitive to soil moisture only within a specific range that is neither too dry nor too wet. This transitional regime is examined to quantify how strongly soil moisture controls local evaporation. We identify the dry, transitional, and wet regimes across the globe, and the locations where each regime is experienced; the spatial patterns among climate models and observationally based datasets often show discrepancies. When we determine dependencies between soil moisture and evaporation only within the transitional regime, we find general consistency of locations having simple linear dependencies versus more complex nonlinear relationships. We conclude that although surface hydroclimates differ between climate models and observations, the locations where soil moisture can control evaporation are well captured. These results have potential application for improved forecasting and climate change assessment.

Full access
Paul A. Dirmeyer
and
Mei Zhao

Abstract

The potential role of the land surface state in improving predictions of seasonal climate is investigated with a coupled land–atmosphere climate model. Climate simulations for 18 boreal-summer seasons (1982–99) have been conducted with specified observed sea surface temperature (SST). The impact on prediction skill of the initial land surface state (interannually varying versus climatological soil wetness) and the effect of errors in downward surface fluxes (precipitation and longwave/shortwave radiation) over land are investigated with a number of parallel experiments. Flux errors are addressed by replacing the downward fluxes with observed values in various combinations to ascertain the separate roles of water and energy flux errors on land surface state variables, upward water and energy fluxes from the land surface, and the important climate variables of precipitation and near-surface air temperature.

Large systematic errors are found in the model, which are only mildly alleviated by the specification of realistic initial soil wetness. The model shows little skill in simulating seasonal anomalies of precipitation, but it does have skill in simulating temperature variations. Replacement of the downward surface fluxes has a clear positive impact on systematic errors, suggesting that the land–atmosphere feedback is helping to exacerbate climate drift. Improvement in the simulation of year-to-year variations in climate is even more evident. With flux replacement, the climate model simulates temperature anomalies with considerable skill over nearly all land areas, and a large fraction of the globe shows significant skill in the simulation of precipitation anomalies. This suggests that the land surface can communicate climate anomalies back to the atmosphere, given proper meteorological forcing. Flux substitution appears to have the largest benefit to improving precipitation skill over the Northern Hemisphere midlatitudes, whereas use of realistic land surface initial conditions improves skill to significant levels over regions of the Southern Hemisphere. Correlations between sets of integrations show that the model has a robust and systematic global response to SST anomalies.

Full access
David O. Benson
and
Paul A. Dirmeyer

Abstract

Increased heat-wave frequency across the United States has led to the need for improved predictability of heat-wave events. A detailed understanding of land–atmosphere interactions and the relationship between soil moisture and temperature extremes could provide useful information for prediction. This study identifies, for many locations, a threshold of soil moisture below which there is an increase in the sensitivity of atmospheric temperature to declining soil moisture. This shift to a hypersensitive regime causes the atmosphere to be more susceptible to atmospherically driven heat-wave conditions. The soil moisture breakpoint where the regime shift occurs is estimated using segmented regression applied to observations and reanalysis data. It is shown that as the soil gets drier, there is a concomitant change in the rate of decrease in latent heat flux and increase in sensible heat flux leading to a strong positive feedback of increased air temperature near the surface, which further dries out the soil. Central, southwestern, and southeastern parts of the United States seem to have regions of clear regime shifts, while the eastern part of the United States generally does not get dry enough to reveal significant breakpoints. Sensible heat flux is seen to be a primary driver of this increased temperature sensitivity aided by the drop in latent heat flux. An investigation of flux tower sites verifies the breakpoint–flux relationships found in reanalysis data. Accurate estimation of these breakpoints can contribute to improved heat-wave prediction.

Full access
David O. Benson
and
Paul A. Dirmeyer

Abstract

Thresholds of soil moisture exist below which the atmosphere becomes hypersensitive to land surface drying, inducing thermal feedbacks that can exacerbate heatwaves. Realistic representation of threshold transitions in forecast models could improve extreme heat predictability and understanding of the role of land–atmosphere coupling. This study evaluates the performance of several forecast models from the Subseasonal Experiment (SubX) and several prototype versions of the Unified Forecast System (UFS) in their representation of threshold transitions by validation against reanalysis data. A metric of skill (true skill score) is applied to soil moisture breakpoint values, which mark the transition to heatwave hypersensitivity for drying soils. Forecast models have poor skill at being initialized on the correct side of the breakpoint, but show improvement when normalized to account for deficiencies in their soil moisture climatologies. Regionally, models performed best in the U.S. Northwest and worst in the Southwest. They effectively capture the tendency of western regions to spend more summer days in the hypersensitive regime than the eastern United States. Models represent well extreme heat as a consequence of atmospheric initial state for the first week of the forecast, but struggle to represent the soil moisture feedback regime. Forecast models generally perform better at extreme heat prediction when they are already dry and in the hypersensitive regime, even when erroneously so, implying that errors or biases exist in model parameterizations. Nevertheless, composite analysis shows encouraging model performance of the “hit” category, suggesting that an improvement in soil moisture initialization could further improve extreme heat forecast skill.

Restricted access
Liang Chen
and
Paul A. Dirmeyer

ABSTRACT

Recent studies have shown the impacts of historical land-use land-cover changes (i.e., deforestation) on hot temperature extremes; contradictory temperature responses have been found between studies using observations and climate models. However, different characterizations of surface temperature are sometimes used in the assessments: land surface skin temperature T s is more commonly used in observation-based studies while near-surface air temperature T 2m is more often used in model-based studies. The inconsistent use of temperature variables is not inconsequential, and the relationship between deforestation and various temperature changes can be entangled, which complicates comparisons between observations and model simulations. In this study, the responses in the diurnal cycle of summertime T s and T 2m to deforestation are investigated using the Community Earth System Model. For the daily maximum, opposite responses are found in T s and T 2m. Due to decreased surface roughness after deforestation, the heat at the land surface cannot be efficiently dissipated into the air, leading to a warmer surface but cooler air. For the daily minimum, strong warming is found in T 2m, which exceeds daytime cooling and leads to overall warming in daily mean temperatures. After comparing several climate models, we find that the models agree in daytime land surface (T s ) warming, but different turbulent transfer characteristics produce discrepancies in T 2m. Our work highlights the need to investigate the diurnal cycles of temperature responses carefully in land-cover change studies. Furthermore, consistent consideration of temperature variables should be applied in future comparisons involving observations and climate models.

Full access
Subhadeep Halder
and
Paul A. Dirmeyer

Abstract

This observationally based study demonstrates the importance of the delayed hydrological response of snow cover and snowmelt over the Eurasian region and Tibet for variability of Indian summer monsoon rainfall during the first two months after onset. Using snow cover fraction and snow water equivalent data during 1967–2003, it is demonstrated that, although the snow-albedo effect is prevalent over western Eurasia, the delayed hydrological effect is strong and persistent over the eastern part. Long soil moisture memory and strong sensitivity of surface fluxes to soil moisture variations over eastern Asia and Tibet provide a mechanism for soil moisture anomalies generated by anomalies in winter and spring snowfall to affect rainfall during the initial months in summer. Dry soil moisture anomalies over the eastern Eurasian region associated with anomalous heating at the surface and midtroposphere help in anchoring of an anomalous upper-tropospheric “blocking” ridge around 100°E and its persistence. This not only leads to prolonged weakening of the subtropical westerly jet but also shifts its position southward of 30°N, followed by penetration of anomalous troughs in the westerlies into the Indian region. Simultaneously, intrusion of cold and dry air from the midlatitudes can reduce the convective instability and hence rainfall over India after the onset. Such a southward shift of the jet can also significantly weaken the vertical easterly wind shear over the Indian region in summer and lead to decrease in rainfall. This delayed hydrological effect also has the potential to modulate the snow–atmosphere coupling strength for temperature and precipitation in operational forecast models through soil moisture–evaporation–precipitation feedbacks.

Full access